User
query

Al:
search

Legend

Initial user query J

0
£

CodeNav agent thought |

CodeNav agent action

D

N Response to agent’s “code” actions from

a persistent Python environment
—— >

Response to agent’s “search” actions
from the Elasticsearch index

Step order

Perform the following directives one by one to run a codenav experiment:
1. Create an OpenAlCodenavAgent with prompt set as
"transformers/transformers_desc" and enable code, search, and done actions.
2. Create the following environments:
a. PythonCodeEnv with code dir as '/opt/conda/lib/python3.12/site-
packages/transformers' and '/root/playground' as the working directory
b. RetrievalEnv with host ” http://localhost:9200" and using index "transformers"
c. DoneEnv
3. Then create an Episode using the above envs and using the user request "Use
object detection pipeline with model 'facebook/detr-resnet-101' to detect all dogs in
the image '/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red
bounding boxes around these detected dogs, and save the resulting image as a PIL
image in variable detected_dogs. Store the detected bbox coordinates and scores in
a pandas dataframe called detection_coords_and_scores"
4. Run the episode for a max of 10 steps or until done.

Now perform the following tasks to help the user inspect the results:

5. Tabulate the interactions in the episode as a dataframe and print the dataframe to
show the columns (max column width of 120) corresponding to action/type and
action/thought

6. Retrieve the resulting detected_dogs variable from the episode and save it to disk
as '/root/playground/detections.jpg'

7. Print detection_coords_and_scores.

Make sure to search for relevant classes/functions before using them unless they
have already been found in previous expanded search results. Do not combine code
for different directives in a single action.

Before writing any code, | need to search for the OpenAlCodenavAgent class to
ensure | understand how to instantiate it correctly.

(type: CLASS) AND (text: OpenAlCodenavAgent)

file_path=codenav/agents/gpt4/agent.py
lines=[16, 42]
type=CLASS
content={
class OpenAlCodeNavAgent(LLMChatCodeNavAgent):
def __init_ (
self,
model: str = DEFAULT_OPENAI_MODEL,
max_tokens: int =50000,
allowed_action_types: Sequence[msg.ACTION_TYPES] = (
"code",
"done",
"search",
"reset",
),
prompt_set: str = "default",
retrievals_per_keyword: int = DEFAULT_RETRIEVAL_PER_QUERY,
interaction_formatter: Optional[lnteractionFormatter] = None,
):
super().__init__(
model=model,
max_tokens=max_tokens,
allowed_action_types=allowed_action_types,
prompt_set=prompt_set,
retrievals_per_keyword=retrievals_per_keyword,
interaction_formatter=interaction_formatter,

)

Only one search result shown for brevity

def create_message_from_text(self, text: str, role: str) -> LimChatMessage:
return create_openai_message(text=text, role=role)

The search results returned the OpenAlCodeNavAgent class definition. | will use this
information to instantiate an OpenAlCodeNavAgent with the specified prompt and
enabling the required actions. | will also need to search for the environments:
PythonCodeEnv, RetrievalEnv, and DoneEnv to understand how to create them
correctly.

(type: CLASS) AND (text: PythonCodeEnv)

(type: CLASS) AND (text: RetrievalEnv)

(type: CLASS) AND (text: DoneEnv)

QUERY: (type: CLASS) AND (text: PythonCodeEnv)

file_path=codenav/interaction/episode.py
lines=[17, 262]
type=CLASS
content={
class Episode:
Represents an episode of interaction between an agent and various environments. It manages the
state and actions of the agent within the episode.

Attributes:
agent (CodeNavAgent): The agent that is participating in the episode.
action_type_to_env (Dictfmsg.ACTION_TYPES, CodeNavEnv]): A mapping from action types to their
corresponding environments.
user_query_str (str): The user's query string for the episode.

min

def __init__(self, agent: CodeNavAgent, action_type_to_env: Dictimsg.ACTION_TYPES, CodeNavEnv],
user_query_str: str):

nin

Initializes the Episode instance.

Args:
agent (CodeNavAgent): The agent that will be used in the episode.
action_type_to_env (Dictfmsg.ACTION_TYPES, CodeNavEnv]): A dictionary mapping action types
to their corresponding environments.
user_query_str (str): The user's query string for the episode.

nin

}

file_path=codenav/environments/code_env.py
lines=[133, 348]
type=CLASS
content={
class PythonCodeEnv(CodeNavEnv):
Python code environment that can execute Python sequences of code.
Attributes:
enable_black_formatting (bool): Flag to enable code formatting using Black.
enable_linting (bool): Flag to enable linting of the code.
enable_type_checking (bool): Flag to enable type checking using mypy.
init_global_vars (Optional[Dict[str, Any]]): Initial global variables for the environment.
code_dir (Optionalfstr]): Directory where code files are located.
sys_paths (Optional[Sequence[str]]): Additional system paths to include.
working_dir (Optional[str]): Working directory for the environment.
max_execution_time (float): Maximum time allowed for code execution.
global_vars (Dict[str, Any]): Global variables updated with each step() call.
exec_trace (List[ExecutionResult]): Trace of execution results from all step calls.

min

}

QUERY: (type: CLASS) AND (text: RetrievalEnv)
file_path=codenav/environments /retrieval_env.py
lines=[46, 141]

type=CLASS

content={

class RetrievalEnv(CodeNavEnv):

min

A class that represents an environment for retrieving code snippets using Elasticsearch.

Attributes:
code_retriever (EsCodeRetriever): An instance of a code retriever that interfaces with Elasticsearch.
expansions_per_query (int): The number of documents to expand upon per query.
prototypes_per_query (int): The number of prototype documents to retrieve per query.
max_per_query (int): The maximum number of documents to retrieve per query.
summarize_code (bool): A flag indicating whether to summarize the code snippets.
overwrite_existing_summary (bool): A flag indicating whether to overwrite existing summaries.
retrieved_es_docs (Dict[str, EsDocument]): A dictionary to store retrieved Elasticsearch documents.

min

}

QUERY: (type: CLASS) AND (text: DoneEnv)
file_path=codenav/environments/done_env.py
lines=[6, 20]
type=CLASS
content={
class DoneEnv(CodeNavEnv):
def check_action_validity(self, action: CodeNavAction) -> Tuple[bool, str]:
assert action.content is not None

if action.content.strip().lower() in ["true", "false"]:
return True, ""
else:
return (
False,
"When executing the done action, the content must be either 'True' or 'False",

Output abridged for brevity]

search

K3

}

The search results provided the necessary information to instantiate the
OpenAlCodeNavAgent, PythonCodeEnvy, RetrievalEnv, and DoneEnv. | will now
proceed to write the code to create an instance of OpenAlCodeNavAgent with the
specified prompt and enable the required actions. Then, | will create instances of the
PythonCodeEnv, RetrievalEnv, and DoneEnv with the provided configurations.

from codenav.agents.gptd4.agent import OpenAlCodeNavAgent
from codenav.environments.code_env import PythonCodeEnv
from codenav.environments.retrieval_env import RetrievalEnv

from codenav.environments.done_envimport DoneEnv

from codenav.interaction.episode import Episode

from codenav.interaction.messages import CodeNavAction

Create an OpenAlCodeNavAgent
agent = OpenAlCodeNavAgent(
prompt_set="transformers/transformers_desc",

allowed_action_types=("code", "search", "done")

)

Create a PythonCodeEnv

python_code_env = PythonCodeEny(
code_dir='/opt/conda/lib/python3.12/site-packages/transformers’,
working_dir='/root/playground’

)

Create a RetrievalEnv

retrieval_env = RetrievalEnv(
host="http://localhost:9200",
index="transformers"

)

Create a DoneEnv
done_env = DoneEnv()

Create a mapping from action types to their corresponding environments
action_type_to_env ={

'‘code': python_code_env,

'search': retrieval_env,

‘done': done_env

}

User request for the episode

user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101' to detect all
dogs in the image '/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in variable
detected_dogs. Store the detected bbox coordinates and scores in a pandas dataframe called
detection_coords_and_scores."

Create an Episode
episode = Episode(agent=agent, action_type_to_env=action_type_to_env,
user_query_str=user_request)

RESPONSE (Execution Result):
EXECUTION ERROR:

RetrievalEnv.__init_ () got an unexpected keyword argument 'host' (File "<string>", line 21, in <module>)

-> Error occurred when executing: retrieval_env = RetrievalEnv(

Additional output hidden for brevity J

The instantiation of the RetrievalEnv failed due to an unexpected keyword argument
'host'. | need to search for the correct way to instantiate the RetrievalEnv with the
provided Elasticsearch host and index information.

(type: CLASS) AND (text: RetrievalEnv)

Output hidden for brevity)

The search results did not directly provide the constructor signature for RetrievalEnv.
However, the EvalManagerConfig class contains 'host' and 'index_name' attributes,
which suggests that the RetrievalEnv might be initialized using an instance of
EsCodeRetriever or a similar approach. | will search specifically for the
EsCodeRetriever class to understand how to properly instantiate the RetrievalEnv
with the Elasticsearch host and index.

(type: CLASS) AND (text: EsCodeRetriever)

file_path=codenav/retrieval/elasticsearch/elasticsearch_retriever.py
lines=[10, 31]
type=CLASS
content={
class EsCodeRetriever:
def __init__(self, index_name: str, host: str):
self.index_name = index_name
assert (
index_name is not None and index_name !=
), "Index name cannot be empty."

Only one search result shown for brevity |

self.host = host
self.es = Elasticsearch(hosts=host)

if not self.es.ping():
raise ValueError(
f"Elasticsearch is not running or could not be reached at {host}."

)

self.code_summarizer = CodeSummarizer()

def search(self, query: str, default_n: int = 10) -> ListfEsDocument]:
body ={"query": {"query_string": {"query": query}}, "size": default_n}
hits = self.es.search(index=self.index_name, body=body)["hits"]["hits"]
return [hit["_source"] for hit in hits]

The EsCodeRetriever class constructor takes an index name and a host as
arguments. | will use this information to instantiate an EsCodeRetriever and then use
it to create the RetrievalEnv. | will then correct the code to instantiate the
RetrievalEnv with the EsCodeRetriever instance.

from codenav.retrieval.elasticsearch.elasticsearch_retriever import EsCodeRetriever

Create an instance of EsCodeRetriever

es_code_retriever = EsCodeRetriever(
index_name="transformers",
host="http://localhost:9200"

)

Correct the instantiation of the RetrievalEnv with the EsCodeRetriever instance
retrieval_env = RetrievalEnv(
code_retriever=es_code_retriever,
expansions_per_query=10, # Assuming a default value for expansions_per_query
prototypes_per_query=10 # Assuming a default value for prototypes_per_query

)

The rest of the code remains the same

RESPONSE (Execution Result):

EXECUTION ERROR:

name 'action_type_to_env'is not defined (File "<string>", line 2, in <module>)
-> Error occurred when executing: episode = Episode(agent=agent,
action_type_to_env=action_type_to_env, user_query_str=user_request)

The variable 'action_type_to_env' was not defined in the current execution context
because it was defined in a previous code block. | need to redefine it along with the
'‘agent' and 'user_request' variables before creating the Episode instance and running
it.
Redefine the agent, action_type_to_env, and user_request variables
agent = OpenAlCodeNavAgent(

prompt_set="transformers/transformers_desc",

allowed_action_types=("code", "search", "done")

)

python_code_env = PythonCodeEny(
code_dir='/opt/conda/lib/python3.12/site-packages/transformers,
working_dir='/root/playground’

)

action_type_to_env={
'‘code': python_code_eny,
'search': retrieval_env,
'done': done_env

}

user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101'
to detect all dogs in the image
'/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in
variable detected_dogs. Store the detected bbox coordinates and scores in a pandas
dataframe called detection_coords_and_scores."

Create an Episode with the updated retrieval environment
episode = Episode(agent=agent, action_type_to_env=action_type_to_eny,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

RESPONSE (Execution Result):

EXECUTION ERROR:

name 'done_enVv'is not defined (File "<string>", line 15, in <module>)

-> Error occurred when executing: 'done': done_env

RELEVANT VARIABLES (only shown if string rep. has changed after code exec):

{"agent": <codenav.agents.gpt4.agent.OpenAlCodeNavAgent object at Ox7f4facaaffd0>,
"python_code_env": <codenav.environments.code_env.PythonCodeEnv object at 0x7f4facaaf2e0>}

| need to redefine the 'done_env' variable as well before creating the Episode
instance. | willinclude the instantiation of 'done_env' along with the other variables
and then create the Episode and run it.

Redefine the done_env variable
done_env =DoneEny()

Redefine the action_type_to_env mapping with the updated environments
action_type_to_env ={

'code': python_code_env,

'search': retrieval_env,

'done': done_env

}

Create an Episode with the updated environments
episode = Episode(agent=agent, action_type_to_env=action_type_to_eny,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

$|E5i|4-ﬁi 5 <

code

code

l—F8 ——olf ——

V
N

code

3418

<

RESPONSE (Execution Result):

EXECUTION ERROR:

name 'user_request' is not defined (File "<string>", line 12, in <module>)

-> Error occurred when executing: episode = Episode(agent=agent,
action_type_to_env=action_type_to_env, user_query_str=user_request)

RELEVANT VARIABLES (only shown if string rep. has changed after code exec):

{"done_env": <codenav.environments.done_env.DoneEnv object at 0x7f4fa75f26b0>,
"action_type_to_env": {'code': <codenav.environments.code_env.PythonCodeEnv object at
Ox7f4facaaf2e0>, 'search': <codenav.environments.retrieval_env.RetrievalEnv object at
0x7f4fad0156f0>, 'done': <codenav.environments.done_env.DoneEnv object at 0x7f4fa75f26b0>}}

| need to redefine the 'user_request' variable before creating the Episode instance. |
will include the 'user_request' string and then create the Episode and run it.

Redefine the user_request string

user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101'
to detect all dogs in the image
'/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in
variable detected_dogs. Store the detected bbox coordinates and scores in a pandas
dataframe called detection_coords_and_scores."

Create an Episode with the updated environments and user request
episode = Episode(agent=agent, action_type_to_env=action_type_to_eny,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

The code has been executed without error, and the relevant variables have
been updated with the expected results. The image with red bounding boxes
around detected dogs is stored in the variable * detected_dogs ", and the
coordinates and scores of the detections are stored in the pandas DataFrame
" detection_coords_and_scores " . The task is completed successfully.

BEe®s?

The episode has been run successfully, and the relevant variables have been
updated. Now, | will proceed with the next directive to tabulate the interactions in the
episode as a dataframe and print the dataframe to show the columns corresponding
to action/type and action/thought.

import pandas as pd

Tabulate the interactions in the episode as a dataframe
interactions_df = episode.tabulate_interactions()

Set the max column width to 120 for better readability
pd.set_option('display.max_colwidth', 120)

Print the dataframe to show the columns corresponding to action/type and
action/thought
print(interactions_df[['action/type], 'action/thought']])

RESPONSE (Execution Result):
STDOUT:

action/type
0 None None
1 search Before writing the code to use the object detection pipeline, | need to search for the implementation of the object ...
2 code The retrieved code block provides the " ObjectDetectionPipeline” class and its usage example. | will use this class t...
3 done The code has been executed without error, and the relevant variables have been updated with the expected resu...

action/thought

Additional output hidden for brevity J

The interactions have been successfully tabulated and printed. Now, | will proceed
with the next directive to retrieve the resulting 'detected_dogs' variable from the
episode and save it to disk as '/root/playground/detections.jpg"

Retrieve the resulting 'detected_dogs' variable from the episode
detected_dogs = episode.code_env.global_vars['detected_dogs']

Save the 'detected_dogs'image to disk
detected_dogs.save('/root/playground/detections.jpg')

RESPONSE (Execution Result):

CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY

RELEVANT VARIABLES (only shown if string rep. has changed after code exec):
{"detected_dogs": <PIL.JpeglmagePlugin.JpeglmageFile image mode=RGB size=640x480 at
0x7F4E224F7FA0>}

The 'detected_dogs' image has been successfully saved to disk. Now, | will proceed
with the final directive to print the 'detection_coords_and_scores' DataFrame.

Retrieve the 'detection_coords_and_scores' DataFrame from the episode
detection_coords_and_scores =
episode.code_env.global_vars['detection_coords_and_scores']

Print the 'detection_coords_and_scores' DataFrame
print(detection_coords_and_scores)

RESPONSE (Execution Result):
STDOUT:

Xmin ymin xmax ymax score
0 208 185 362 303 0.998988

RELEVANT VARIABLES (only shown if string rep. has changed after code exec):

{"detection_coords_and_scores": xmin ymin xmax ymax score
0 208 185 362 303 0.998988}

The 'detection_coords_and_scores' DataFrame has been successfully printed. All
directives have been completed, and | can now inform the user that the task is done.

Original image referenced in prompt at path

Image saved by the agent to /root/playground/detections.jpg’

