
from codenav.retrieval.elasticsearch.elasticsearch_retriever import EsCodeRetriever

Create an instance of EsCodeRetriever
es_code_retriever = EsCodeRetriever(

index_name="transformers",
host="http://localhost:9200"

)

Correct the instantiation of the RetrievalEnv with the EsCodeRetriever instance
retrieval_env = RetrievalEnv(

code_retriever=es_code_retriever,
expansions_per_query=10, # Assuming a default value for expansions_per_query
prototypes_per_query=10 # Assuming a default value for prototypes_per_query

)

The rest of the code remains the same

Perform the following directives one by one to run a codenav experiment:
1. Create an OpenAICodenavAgent with prompt set as
"transformers/transformers_desc" and enable code, search, and done actions.
2. Create the following environments:

a. PythonCodeEnv with code dir as '/opt/conda/lib/python3.12/site-
packages/transformers' and '/root/playground' as the working directory

b. RetrievalEnv with host ” http://localhost:9200" and using index "transformers"
c. DoneEnv

3. Then create an Episode using the above envs and using the user request "Use
object detection pipeline with model 'facebook/detr-resnet-101' to detect all dogs in
the image '/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red
bounding boxes around these detected dogs, and save the resulting image as a PIL
image in variable detected_dogs. Store the detected bbox coordinates and scores in
a pandas dataframe called detection_coords_and_scores"
4. Run the episode for a max of 10 steps or until done.

Now perform the following tasks to help the user inspect the results:
5. Tabulate the interactions in the episode as a dataframe and print the dataframe to
show the columns (max column width of 120) corresponding to action/type and
action/thought
6. Retrieve the resulting detected_dogs variable from the episode and save it to disk
as '/root/playground/detections.jpg'
7. Print detection_coords_and_scores.

Make sure to search for relevant classes/functions before using them unless they
have already been found in previous expanded search results. Do not combine code
for different directives in a single action.

Before writing any code, I need to search for the OpenAICodenavAgent class to
ensure I understand how to instantiate it correctly.

(type: CLASS) AND (text: OpenAICodenavAgent)

file_path=codenav/agents/gpt4/agent.py
lines=[16, 42]
type=CLASS
content={
class OpenAICodeNavAgent(LLMChatCodeNavAgent):

def __init__(
self,
model: str = DEFAULT_OPENAI_MODEL,
max_tokens: int = 50000,
allowed_action_types: Sequence[msg.ACTION_TYPES] = (

"code",
"done",
"search",
"reset",

),
prompt_set: str = "default",
retrievals_per_keyword: int = DEFAULT_RETRIEVAL_PER_QUERY,
interaction_formatter: Optional[InteractionFormatter] = None,

):
super().__init__(

model=model,
max_tokens=max_tokens,
allowed_action_types=allowed_action_types,
prompt_set=prompt_set,
retrievals_per_keyword=retrievals_per_keyword,
interaction_formatter=interaction_formatter,

)

def create_message_from_text(self, text: str, role: str) -> LlmChatMessage:
return create_openai_message(text=text, role=role)

}

Only one search result shown for brevity

A1:
search

R1

The search results returned the OpenAICodeNavAgent class definition. I will use this
information to instantiate an OpenAICodeNavAgent with the specified prompt and
enabling the required actions. I will also need to search for the environments:
PythonCodeEnv, RetrievalEnv, and DoneEnv to understand how to create them
correctly.
(type: CLASS) AND (text: PythonCodeEnv)
(type: CLASS) AND (text: RetrievalEnv)
(type: CLASS) AND (text: DoneEnv)

QUERY: (type: CLASS) AND (text: PythonCodeEnv)

file_path=codenav/interaction/episode.py
lines=[17, 262]
type=CLASS
content={
class Episode:

"""
Represents an episode of interaction between an agent and various environments. It manages the

state and actions of the agent within the episode.

Attributes:
agent (CodeNavAgent): The agent that is participating in the episode.
action_type_to_env (Dict[msg.ACTION_TYPES, CodeNavEnv]): A mapping from action types to their

corresponding environments.
user_query_str (str): The user's query string for the episode.

"""

def __init__(self, agent: CodeNavAgent, action_type_to_env: Dict[msg.ACTION_TYPES, CodeNavEnv],
user_query_str: str):

"""
Initializes the Episode instance.

Args:
agent (CodeNavAgent): The agent that will be used in the episode.
action_type_to_env (Dict[msg.ACTION_TYPES, CodeNavEnv]): A dictionary mapping action types

to their corresponding environments.
user_query_str (str): The user's query string for the episode.

"""
...

}

file_path=codenav/environments/code_env.py
lines=[133, 348]
type=CLASS
content={
class PythonCodeEnv(CodeNavEnv):

"""
Python code environment that can execute Python sequences of code.
Attributes:

enable_black_formatting (bool): Flag to enable code formatting using Black.
enable_linting (bool): Flag to enable linting of the code.
enable_type_checking (bool): Flag to enable type checking using mypy.
init_global_vars (Optional[Dict[str, Any]]): Initial global variables for the environment.
code_dir (Optional[str]): Directory where code files are located.
sys_paths (Optional[Sequence[str]]): Additional system paths to include.
working_dir (Optional[str]): Working directory for the environment.
max_execution_time (float): Maximum time allowed for code execution.
global_vars (Dict[str, Any]): Global variables updated with each step() call.
exec_trace (List[ExecutionResult]): Trace of execution results from all step calls.

"""
…

}
QUERY: (type: CLASS) AND (text: RetrievalEnv)

file_path=codenav/environments /retrieval_env.py
lines=[46, 141]
type=CLASS
content={
class RetrievalEnv(CodeNavEnv):

"""
A class that represents an environment for retrieving code snippets using Elasticsearch.

Attributes:
code_retriever (EsCodeRetriever): An instance of a code retriever that interfaces with Elasticsearch.
expansions_per_query (int): The number of documents to expand upon per query.
prototypes_per_query (int): The number of prototype documents to retrieve per query.
max_per_query (int): The maximum number of documents to retrieve per query.
summarize_code (bool): A flag indicating whether to summarize the code snippets.
overwrite_existing_summary (bool): A flag indicating whether to overwrite existing summaries.
retrieved_es_docs (Dict[str, EsDocument]): A dictionary to store retrieved Elasticsearch documents.

"""
...

}

QUERY: (type: CLASS) AND (text: DoneEnv)

file_path=codenav/environments/done_env.py
lines=[6, 20]
type=CLASS
content={
class DoneEnv(CodeNavEnv):

def check_action_validity(self, action: CodeNavAction) -> Tuple[bool, str]:
assert action.content is not None

if action.content.strip().lower() in ["true", "false"]:
return True, ""

else:
return (

False,
"When executing the done action, the content must be either 'True' or 'False'",

)
…

}

Output abridged for brevity

A2:
search

R2

RESPONSE (Execution Result):
EXECUTION ERROR:
name 'action_type_to_env' is not defined (File "<string>", line 2, in <module>)
-> Error occurred when executing: episode = Episode(agent=agent,
action_type_to_env=action_type_to_env, user_query_str=user_request)

R6

The instantiation of the RetrievalEnv failed due to an unexpected keyword argument
'host'. I need to search for the correct way to instantiate the RetrievalEnv with the
provided Elasticsearch host and index information.

(type: CLASS) AND (text: RetrievalEnv)

Output hidden for brevity

A4:
search

R4

The search results did not directly provide the constructor signature for RetrievalEnv.
However, the EvalManagerConfig class contains 'host' and 'index_name' attributes,
which suggests that the RetrievalEnv might be initialized using an instance of
EsCodeRetriever or a similar approach. I will search specifically for the
EsCodeRetriever class to understand how to properly instantiate the RetrievalEnv
with the Elasticsearch host and index.

(type: CLASS) AND (text: EsCodeRetriever)
A5:

search

from codenav.agents.gpt4.agent import OpenAICodeNavAgent
from codenav.environments.code_env import PythonCodeEnv
from codenav.environments.retrieval_env import RetrievalEnv
from codenav.environments.done_env import DoneEnv
from codenav.interaction.episode import Episode
from codenav.interaction.messages import CodeNavAction

Create an OpenAICodeNavAgent
agent = OpenAICodeNavAgent(
 prompt_set="transformers/transformers_desc",
 allowed_action_types=("code", "search", "done")
)

Create a PythonCodeEnv
python_code_env = PythonCodeEnv(
 code_dir='/opt/conda/lib/python3.12/site-packages/transformers',
 working_dir='/root/playground'
)

Create a RetrievalEnv
retrieval_env = RetrievalEnv(
 host="http://localhost:9200",
 index="transformers"
)

Create a DoneEnv
done_env = DoneEnv()

Create a mapping from action types to their corresponding environments
action_type_to_env = {
 'code': python_code_env,
 'search': retrieval_env,
 'done': done_env
}

User request for the episode
user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101' to detect all
dogs in the image '/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in variable
detected_dogs. Store the detected bbox coordinates and scores in a pandas dataframe called
detection_coords_and_scores."

Create an Episode
episode = Episode(agent=agent, action_type_to_env=action_type_to_env,
user_query_str=user_request)

The search results provided the necessary information to instantiate the
OpenAICodeNavAgent, PythonCodeEnv, RetrievalEnv, and DoneEnv. I will now
proceed to write the code to create an instance of OpenAICodeNavAgent with the
specified prompt and enable the required actions. Then, I will create instances of the
PythonCodeEnv, RetrievalEnv, and DoneEnv with the provided configurations.

A3:
code

file_path=codenav/retrieval/elasticsearch/elasticsearch_retriever.py
lines=[10, 31]
type=CLASS
content={
class EsCodeRetriever:

def __init__(self, index_name: str, host: str):
self.index_name = index_name
assert (

index_name is not None and index_name != ""
), "Index name cannot be empty."

self.host = host
self.es = Elasticsearch(hosts=host)

if not self.es.ping():
raise ValueError(

f"Elasticsearch is not running or could not be reached at {host}."
)

self.code_summarizer = CodeSummarizer()

def search(self, query: str, default_n: int = 10) -> List[EsDocument]:
body = {"query": {"query_string": {"query": query}}, "size": default_n}
hits = self.es.search(index=self.index_name, body=body)["hits"]["hits"]
return [hit["_source"] for hit in hits]

}

Only one search result shown for brevity

R5

The EsCodeRetriever class constructor takes an index name and a host as
arguments. I will use this information to instantiate an EsCodeRetriever and then use
it to create the RetrievalEnv. I will then correct the code to instantiate the
RetrievalEnv with the EsCodeRetriever instance.

A6:
code

Redefine the agent, action_type_to_env, and user_request variables
agent = OpenAICodeNavAgent(
 prompt_set="transformers/transformers_desc",
 allowed_action_types=("code", "search", "done")
)

python_code_env = PythonCodeEnv(
 code_dir='/opt/conda/lib/python3.12/site-packages/transformers',
 working_dir='/root/playground'
)

action_type_to_env = {
 'code': python_code_env,
 'search': retrieval_env,
 'done': done_env
}

user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101'
to detect all dogs in the image
'/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in
variable detected_dogs. Store the detected bbox coordinates and scores in a pandas
dataframe called detection_coords_and_scores."

Create an Episode with the updated retrieval environment
episode = Episode(agent=agent, action_type_to_env=action_type_to_env,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

RESPONSE (Execution Result):
EXECUTION ERROR:
name 'done_env' is not defined (File "<string>", line 15, in <module>)
-> Error occurred when executing: 'done': done_env
RELEVANT VARIABLES (only shown if string rep. has changed after code exec):
{"agent": <codenav.agents.gpt4.agent.OpenAICodeNavAgent object at 0x7f4facaaffd0>,
"python_code_env": <codenav.environments.code_env.PythonCodeEnv object at 0x7f4facaaf2e0>}

R7

The variable 'action_type_to_env' was not defined in the current execution context
because it was defined in a previous code block. I need to redefine it along with the
'agent' and 'user_request' variables before creating the Episode instance and running
it.

A7:
code

Redefine the done_env variable
done_env = DoneEnv()

Redefine the action_type_to_env mapping with the updated environments
action_type_to_env = {
 'code': python_code_env,
 'search': retrieval_env,
 'done': done_env
}

Create an Episode with the updated environments
episode = Episode(agent=agent, action_type_to_env=action_type_to_env,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

I need to redefine the 'done_env' variable as well before creating the Episode
instance. I will include the instantiation of 'done_env' along with the other variables
and then create the Episode and run it.

A8:
code

RESPONSE (Execution Result):
EXECUTION ERROR:
name 'user_request' is not defined (File "<string>", line 12, in <module>)
-> Error occurred when executing: episode = Episode(agent=agent,
action_type_to_env=action_type_to_env, user_query_str=user_request)
RELEVANT VARIABLES (only shown if string rep. has changed after code exec):
{"done_env": <codenav.environments.done_env.DoneEnv object at 0x7f4fa75f26b0>,
"action_type_to_env": {'code': <codenav.environments.code_env.PythonCodeEnv object at
0x7f4facaaf2e0>, 'search': <codenav.environments.retrieval_env.RetrievalEnv object at
0x7f4fad0156f0>, 'done': <codenav.environments.done_env.DoneEnv object at 0x7f4fa75f26b0>}}

R8

Redefine the user_request string
user_request = "Use object detection pipeline with model 'facebook/detr-resnet-101'
to detect all dogs in the image
'/root/codenav/assets/images/57770362_576ec742bb_z.jpg', draw red bounding
boxes around these detected dogs, and save the resulting image as a PIL image in
variable detected_dogs. Store the detected bbox coordinates and scores in a pandas
dataframe called detection_coords_and_scores."

Create an Episode with the updated environments and user request
episode = Episode(agent=agent, action_type_to_env=action_type_to_env,
user_query_str=user_request)

Run the episode for a max of 10 steps or until done
episode.step_until_max_steps_or_success(max_steps=10)

I need to redefine the 'user_request' variable before creating the Episode instance. I
will include the 'user_request' string and then create the Episode and run it.

A9:
code

R9

import pandas as pd

Tabulate the interactions in the episode as a dataframe
interactions_df = episode.tabulate_interactions()

Set the max column width to 120 for better readability
pd.set_option('display.max_colwidth', 120)

Print the dataframe to show the columns corresponding to action/type and
action/thought
print(interactions_df[['action/type', 'action/thought']])

The episode has been run successfully, and the relevant variables have been
updated. Now, I will proceed with the next directive to tabulate the interactions in the
episode as a dataframe and print the dataframe to show the columns corresponding
to action/type and action/thought.

A10:
code

RESPONSE (Execution Result):
STDOUT:
action/type action/thought

0 None None
1 search Before writing the code to use the object detection pipeline, I need to search for the implementation of the object ...
2 code The retrieved code block provides the `ObjectDetectionPipeline` class and its usage example. I will use this class t...
3 done The code has been executed without error, and the relevant variables have been updated with the expected resu...R10

Additional output hidden for brevity

Retrieve the resulting 'detected_dogs' variable from the episode
detected_dogs = episode.code_env.global_vars['detected_dogs']

Save the 'detected_dogs' image to disk
detected_dogs.save('/root/playground/detections.jpg')

The interactions have been successfully tabulated and printed. Now, I will proceed
with the next directive to retrieve the resulting 'detected_dogs' variable from the
episode and save it to disk as '/root/playground/detections.jpg'.

A11:
code

RESPONSE (Execution Result):
CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY
RELEVANT VARIABLES (only shown if string rep. has changed after code exec):
{"detected_dogs": <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at
0x7F4E224F7FA0>}

R11

Retrieve the 'detection_coords_and_scores' DataFrame from the episode
detection_coords_and_scores =
episode.code_env.global_vars['detection_coords_and_scores']

Print the 'detection_coords_and_scores' DataFrame
print(detection_coords_and_scores)

The 'detected_dogs' image has been successfully saved to disk. Now, I will proceed
with the final directive to print the 'detection_coords_and_scores' DataFrame.

A12:
code

RESPONSE (Execution Result):
STDOUT:

xmin ymin xmax ymax score
0 208 185 362 303 0.998988

RELEVANT VARIABLES (only shown if string rep. has changed after code exec):
{"detection_coords_and_scores": xmin ymin xmax ymax score
0 208 185 362 303 0.998988}

R12

The 'detection_coords_and_scores' DataFrame has been successfully printed. All
directives have been completed, and I can now inform the user that the task is done.

A13:
done

Original image referenced in prompt at path
/root/codenav/assets/images/57770362_576ec742bb_z.jpg

Image saved by the agent to /root/playground/detections.jpg’

RESPONSE (Execution Result):
EXECUTION ERROR:
RetrievalEnv.__init__() got an unexpected keyword argument 'host' (File "<string>", line 21, in <module>)
-> Error occurred when executing: retrieval_env = RetrievalEnv(

A3
Additional output hidden for brevity

User
query

?

CodeNav agent thought

CodeNav agent action

Response to agent’s “code” actions from
a persistent Python environment

Response to agent’s “search” actions
from the Elasticsearch index

? Initial user query

Legend

Step order

