******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I have a lengthy recording, 2300-131720-0000.flac. Can you help me provide a short and concise summary of what was discussed, so I can easily review the main points?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find a function in the `mnm` codebase that can transcribe the audio file to text. Once I have the transcribed text, I will search for a function that can summarize the text to provide a concise summary of the main points discussed in the recording. ACTION TYPE: search ACTION CONTENT: text: speech recognition text: summarization -----Response----- RESPONSE (Retrieval Result): QUERY: text: speech recognition CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[463, 489] type=FUNCTION content={ def optical_character_recognition( image, ckpt=MODEL_SELECTION["optical_character_recognition"] ): """ It takes an image and outputs recognized texts in the image. """ import easyocr if isinstance(image, str): image_path = image if os.path.exists(image) else get_full_path_data(image) else: image = image_processing(image) image_path = os.path.join(MNM_BASE_PATH_DATA, "ocr_temp.jpg") image.save(image_path) assert ckpt == "easyOCR" # only support easyocr for now reader = easyocr.Reader( ["en"] ) # this needs to run only once to load the model into memory result = reader.readtext(image_path) result_text = [ text for _, text, _ in result ] # Extract only the text from the result result_formatted = {"text": ", ".join(result_text)} return result_formatted } --- file_path=mnm/tool_api.py lines=[348, 375] type=FUNCTION content={ def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): """ Processes an image and a question about the image, then generates an answer using a pre-trained model. Args: image: The image to be processed. question: The question related to the image. ckpt: The checkpoint or model identifier for the pre-trained model. Defaults to MODEL_SELECTION["visual_question_answering"]. Returns: A dictionary with a key 'text' containing the generated answer to the question. Examples: >>> answer = visual_question_answering(my_image, "What is in this image?") >>> print(answer['text']) "A cat sitting on a windowsill." """ ... } --- (37 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 34 classes/functions found in unexpanded results (search again with the same query to see details): def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py QUERY: text: summarization CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[143, 163] type=FUNCTION content={ def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): """ Summarizes a given text into a few sentences using a pre-trained model. Args: text (str): The text to be summarized. ckpt: The checkpoint or model identifier to use for the summarization pipeline. Defaults to a pre-selected model checkpoint. Returns: dict: A dictionary containing the summarized text under the key 'text'. Examples: summary = text_summarization("The quick brown fox jumps over the lazy dog.") print(summary) # Outputs a summarized version of the input text. """ ... } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (21 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 18 classes/functions found in unexpanded results (search again with the same query to see details): def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `automatic_speech_recognition` function from `mnm/tool_api.py` can be used to transcribe the audio file to text. After obtaining the transcription, the `text_summarization` function from the same file can be used to summarize the transcribed text. I will now provide the code to perform these two steps. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import automatic_speech_recognition, text_summarization # Transcribe the audio file to text transcription = automatic_speech_recognition(audio='/root/input_data/2300-131720-0000.flac') # Summarize the transcribed text summary = text_summarization(text=transcription['text']) summary_text = summary['text'] -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"automatic_speech_recognition": , "text_summarization": , "transcription": {'text': ' The Paris plant, like that at the Crystal Palace, was a temporary exhibit.'}, "summary": {'text': 'The Paris plant, like that at the Crystal Palace, was a temporary exhibit'}, "summary_text": The Paris plant, like that at the Crystal Palace, was a temporary exhibit} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The code has been executed successfully, and the audio file has been transcribed and summarized. The summary of the audio file is available in the variable `summary_text`. I will now provide a code summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import automatic_speech_recognition, text_summarization transcription = automatic_speech_recognition(audio='/root/input_data/2300-131720-0000.flac') summary = text_summarization(text=transcription['text']) summary_text = summary['text'] -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged receipt of the summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None