******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I have an image COCO_train2014_000000256855.jpg. The image seems to have some text on it. Could you help me find out what the text says?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: The user has an image with text on it and wants to find out what the text says. This sounds like a task for optical character recognition (OCR). I will search the codebase for a function that can perform OCR to transcribe the text from the image. ACTION TYPE: search ACTION CONTENT: text: optical character recognition -----Response----- RESPONSE (Retrieval Result): QUERY: text: optical character recognition CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[463, 489] type=FUNCTION content={ def optical_character_recognition( image, ckpt=MODEL_SELECTION["optical_character_recognition"] ): """ It takes an image and outputs recognized texts in the image. """ import easyocr if isinstance(image, str): image_path = image if os.path.exists(image) else get_full_path_data(image) else: image = image_processing(image) image_path = os.path.join(MNM_BASE_PATH_DATA, "ocr_temp.jpg") image.save(image_path) assert ckpt == "easyOCR" # only support easyocr for now reader = easyocr.Reader( ["en"] ) # this needs to run only once to load the model into memory result = reader.readtext(image_path) result_text = [ text for _, text, _ in result ] # Extract only the text from the result result_formatted = {"text": ", ".join(result_text)} return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (39 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 35 classes/functions found in unexpanded results (search again with the same query to see details): def text_processing(file_path): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def love_calculator(first_name: str, second_name: str, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def wikipedia_simple_search(text: str, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The search results returned a function called `optical_character_recognition` in the `tool_api.py` file which is designed to recognize and extract text from images. This is exactly what we need for the user's request. I will write code to call this function with the image provided by the user. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import optical_character_recognition # The path to the image file provided by the user image_path = '/root/input_data/COCO_train2014_000000256855.jpg' # Call the optical_character_recognition function to extract text from the image text_recognition_result = optical_character_recognition(image_path) -----Response----- RESPONSE (Execution Result): STDOUT (STDOUT was too long. Showing only the start and end separated by ellipsis.): Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complet ... ██████████████████████████████████████████████-| 99.3% Complete Progress: |█████████████████████████████████████████████████-| 99.4% Complete Progress: |█████████████████████████████████████████████████-| 99.4% Complete Progress: |█████████████████████████████████████████████████-| 99.5% Complete Progress: |█████████████████████████████████████████████████-| 99.5% Complete Progress: |█████████████████████████████████████████████████-| 99.6% Complete Progress: |█████████████████████████████████████████████████-| 99.7% Complete Progress: |█████████████████████████████████████████████████-| 99.7% Complete Progress: |█████████████████████████████████████████████████-| 99.8% Complete Progress: |█████████████████████████████████████████████████-| 99.8% Complete Progress: |█████████████████████████████████████████████████-| 99.9% Complete Progress: |█████████████████████████████████████████████████-| 99.9% Complete Progress: |██████████████████████████████████████████████████| 100.0% Complete RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"optical_character_recognition": , "image_path": /root/input_data/COCO_train2014_000000256855.jpg, "text_recognition_result": {'text': 'Qenn'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The optical character recognition function has successfully extracted text from the image. The result is stored in the variable `text_recognition_result` with the key 'text' containing the recognized text "Qenn". I will now summarize the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import optical_character_recognition text_recognition_result = optical_character_recognition(image='/root/input_data/COCO_train2014_000000256855.jpg') -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The task has been completed successfully, and the user has acknowledged receipt of the summary. ACTION TYPE: done ACTION CONTENT: True -----Response----- None