******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "Could you identify and extract the graffiti text from the image 'COCO_train2014_000000028742.jpg'? I would appreciate it if you could directly translate the words written there." Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to search for a function that can detect and transcribe alphanumeric characters in an image, which is essentially optical character recognition (OCR). This function will help identify the graffiti text in the image. After that, I will need to find a function that can translate text. ACTION TYPE: search ACTION CONTENT: text: transcribing alphanumeric characters text: translate text -----Response----- RESPONSE (Retrieval Result): QUERY: text: transcribing alphanumeric characters CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[463, 489] type=FUNCTION content={ def optical_character_recognition( image, ckpt=MODEL_SELECTION["optical_character_recognition"] ): """ It takes an image and outputs recognized texts in the image. """ import easyocr if isinstance(image, str): image_path = image if os.path.exists(image) else get_full_path_data(image) else: image = image_processing(image) image_path = os.path.join(MNM_BASE_PATH_DATA, "ocr_temp.jpg") image.save(image_path) assert ckpt == "easyOCR" # only support easyocr for now reader = easyocr.Reader( ["en"] ) # this needs to run only once to load the model into memory result = reader.readtext(image_path) result_text = [ text for _, text, _ in result ] # Extract only the text from the result result_formatted = {"text": ", ".join(result_text)} return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (40 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 36 classes/functions found in unexpanded results (search again with the same query to see details): def text_processing(file_path): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def love_calculator(first_name: str, second_name: str, ckpt=None): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py QUERY: text: translate text CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[348, 375] type=FUNCTION content={ def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): """ Processes an image and a question about the image, then generates an answer using a pre-trained model. Args: image: The image to be processed. question: The question related to the image. ckpt: The checkpoint or model identifier for the pre-trained model. Defaults to MODEL_SELECTION["visual_question_answering"]. Returns: A dictionary with a key 'text' containing the generated answer to the question. Examples: >>> answer = visual_question_answering(my_image, "What is in this image?") >>> print(answer['text']) "A cat sitting on a windowsill." """ ... } --- file_path=mnm/tool_api.py lines=[325, 346] type=FUNCTION content={ def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): """ Classifies an image into one of the predefined categories using a Vision Transformer (ViT) model. Args: image: The image to be classified, which will be processed by `image_processing` function. ckpt (str, optional): The checkpoint or model identifier to use for loading the pre-trained model. Defaults to `MODEL_SELECTION["image_classification"]`. Returns: dict: A dictionary with a key "text" that maps to the predicted category of the image. Examples: >>> result = image_classification(my_image) >>> print(result) {'text': 'cat'} """ ... } --- file_path=mnm/tool_api.py lines=[178, 193] type=FUNCTION content={ def question_answering( question: str, text: str, ckpt=MODEL_SELECTION["question_answering"] ): # alternative: "deepset/roberta-base-squad2" """ It takes a text and a question, and outputs an answer to that question based on the text. """ question = text_processing(question) text = text_processing(text) pipe = pipeline("question-answering", model=ckpt) result_raw = pipe( question=question, context=text ) # {'score': 0.01082150824368, 'start': 0, 'end': 10, 'answer': 'My name is'} result_formatted = {"text": result_raw["answer"]} return result_formatted } --- (26 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 22 classes/functions found in unexpanded results (search again with the same query to see details): def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The function `optical_character_recognition` from `mnm/tool_api.py` can be used to transcribe alphanumeric characters from the image. However, I did not find a direct function for translating text. I will need to search again with a more specific query to find a function that can translate the transcribed text. ACTION TYPE: search ACTION CONTENT: text: translate -----Response----- RESPONSE (Retrieval Result): QUERY: text: translate CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[377, 411] type=FUNCTION content={ def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): """ Performs object detection on an image using a DETR (DEtection TRansformer) model. Args: image: The image on which to perform object detection. ckpt: A string representing the model checkpoint to use for object detection. Defaults to a value from MODEL_SELECTION["object_detection"]. Returns: A dictionary with two keys: - 'image': The processed image. - 'objects': A list of dictionaries, each containing a 'bbox' key with the bounding box coordinates and a 'label' key with the object's label. Raises: ImportError: If the required modules 'torch' or 'transformers' are not installed. Examples: >>> result = object_detection(my_image) >>> print(result['objects']) [{'bbox': [x1, y1, x2, y2], 'label': 'object_label'}, ...] """ ... } --- file_path=mnm/tool_api.py lines=[973, 983] type=FUNCTION content={ def get_weather(lon: str, lat: str, ckpt=None): """ Provides weather forecast data based on specific geographical coordinates. """ url = "http://www.7timer.info/bin/api.pl" params = {"lon": lon, "lat": lat, "product": "civil", "output": "json"} response = requests.get(url, params=params) result_formatted = {"objects": response.json()["dataseries"]} return result_formatted } --- file_path=mnm/tool_api.py lines=[911, 929] type=FUNCTION content={ def love_calculator(first_name: str, second_name: str, ckpt=None): """ Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship. """ url = "https://love-calculator.p.rapidapi.com/getPercentage" params = {"fname": first_name, "sname": second_name} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "love-calculator.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() result_formatted = { "number": result_formatted["percentage"], "message": result_formatted["result"], } return result_formatted } --- (17 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 13 classes/functions found in unexpanded results (search again with the same query to see details): def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def get_date_fact(date: str, ckpt=None): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: It appears that there is no direct function for text translation in the provided code blocks. Given this, I will proceed with using the `optical_character_recognition` function to transcribe the graffiti text from the image. Since translation is not available, I will inform the user that the translation part of the request cannot be fulfilled with the current codebase. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import optical_character_recognition # Transcribe the graffiti text from the image image_path = '/root/input_data/COCO_train2014_000000028742.jpg' transcribed_text = optical_character_recognition(image_path) print(transcribed_text) -----Response----- RESPONSE (Execution Result): STDOUT (STDOUT was too long. Showing only the start and end separated by ellipsis.): Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.0% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complete Progress: |--------------------------------------------------| 0.1% Complet ... ████████████████████████████-| 99.3% Complete Progress: |█████████████████████████████████████████████████-| 99.4% Complete Progress: |█████████████████████████████████████████████████-| 99.4% Complete Progress: |█████████████████████████████████████████████████-| 99.5% Complete Progress: |█████████████████████████████████████████████████-| 99.5% Complete Progress: |█████████████████████████████████████████████████-| 99.6% Complete Progress: |█████████████████████████████████████████████████-| 99.7% Complete Progress: |█████████████████████████████████████████████████-| 99.7% Complete Progress: |█████████████████████████████████████████████████-| 99.8% Complete Progress: |█████████████████████████████████████████████████-| 99.8% Complete Progress: |█████████████████████████████████████████████████-| 99.9% Complete Progress: |█████████████████████████████████████████████████-| 99.9% Complete Progress: |██████████████████████████████████████████████████| 100.0% Complete{'text': 'APERH'} RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"optical_character_recognition": , "image_path": /root/input_data/COCO_train2014_000000028742.jpg, "transcribed_text": {'text': 'APERH'}} ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The graffiti text from the image has been successfully transcribed as 'APERH'. Since there is no translation function available in the codebase, I will inform the user that the transcription is complete, but translation cannot be performed with the current functions. ACTION TYPE: done ACTION CONTENT: False -----Response----- None ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): Please immediately take a code_summary action to generate a summary of your code produced so far. If you have not produced any code yet, make an educated guess based on what you have learned so far. ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: The user has requested a code summary of the actions taken so far. I will summarize the code that was used to transcribe the graffiti text from the image. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import optical_character_recognition output0 = optical_character_recognition(image='/root/input_data/COCO_train2014_000000028742.jpg') -----Response----- None