******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I'm curious, what are the chances of a successful relationship between Jack Dawson and Rose Dewitt Bukater, and can you also provide a fun trivia fact relating to this? Also, I would like to get some insights, whether the overall sentiment from that trivia fact is positive or negative." Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find the function that calculates the compatibility between two names, which is likely to be part of the information retrieval functions in the `mnm` codebase. After that, I will search for a function that can retrieve a fun trivia fact. Lastly, I will look for a function that can analyze the sentiment of a given text. I will start by searching for the love calculator function. ACTION TYPE: search ACTION CONTENT: text: love calculator -----Response----- RESPONSE (Retrieval Result): QUERY: text: love calculator CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[911, 929] type=FUNCTION content={ def love_calculator(first_name: str, second_name: str, ckpt=None): """ Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship. """ url = "https://love-calculator.p.rapidapi.com/getPercentage" params = {"fname": first_name, "sname": second_name} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "love-calculator.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() result_formatted = { "number": result_formatted["percentage"], "message": result_formatted["result"], } return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- (19 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 15 classes/functions found in unexpanded results (search again with the same query to see details): def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def audio_processing(audio_file): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def image_crop_top(image, ckpt=None): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `love_calculator` function has been found, which takes two names as input and returns their love compatibility. Next, I will search for a function that can retrieve a fun trivia fact. After obtaining the trivia fact, I will need to find a function that can analyze the sentiment of the given text. ACTION TYPE: search ACTION CONTENT: text: trivia -----Response----- RESPONSE (Retrieval Result): QUERY: text: trivia CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[973, 983] type=FUNCTION content={ def get_weather(lon: str, lat: str, ckpt=None): """ Provides weather forecast data based on specific geographical coordinates. """ url = "http://www.7timer.info/bin/api.pl" params = {"lon": lon, "lat": lat, "product": "civil", "output": "json"} response = requests.get(url, params=params) result_formatted = {"objects": response.json()["dataseries"]} return result_formatted } --- file_path=mnm/tool_api.py lines=[51, 77] type=FUNCTION content={ def text_processing(file_path): """ preprocess the text file Args: - the path of .doc .docx .txt file Returns: - text with string format Notes: - This function is designed for text input. """ # Check the file extension if file_path.endswith(".txt"): with open(file_path, "r") as file: content = file.read() elif file_path.endswith(".doc") or file_path.endswith(".docx"): # Use textract to extract text from doc and docx files content = textract.process(file_path).decode("utf-8") else: # if the file is not .txt .doc .docx, then it is a string, directly return the stirng return file_path return content } --- (All code blocks matching the query were returned.) ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The `get_trivia_fact` function has been found, which can provide trivia facts about a number. However, since the user's query does not specify a number, I will assume that any trivia fact will suffice. Next, I need to search for a function that can analyze the sentiment of a given text to determine if it's positive or negative. ACTION TYPE: search ACTION CONTENT: text: sentiment -----Response----- RESPONSE (Retrieval Result): QUERY: text: sentiment CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[165, 176] type=FUNCTION content={ def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): """ Classifies a given text into a category based on the model's vocabulary. Args: text (str): The text to be classified. ckpt: The model checkpoint to use for classification. Defaults to MODEL_SELECTION["text_classification"]. Returns: dict: A dictionary with the key 'text' and the value as the classification label. Examples: >>> text_classification("I love sunny days.") {'text': 'POSITIVE'} """ ... } --- file_path=mnm/tool_api.py lines=[491, 534] type=FUNCTION content={ def image_crop(image, object, ckpt=None): """ Crops an image to the region within a specified bounding box. Args: image: The image to be cropped. object: A dictionary containing the bounding box coordinates with the key 'bbox'. ckpt: Optional; a checkpoint or state to use for additional processing (not used in the current implementation). Returns: A dictionary with the key 'image' containing the cropped image. Raises: ValueError: If the bounding box is a string and cannot be converted to a list of coordinates. Examples: # Assuming `img` is an image object and `obj` is a dict with bbox coordinates cropped_image_result = image_crop(img, obj) cropped_image = cropped_image_result['image'] """ ... } --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (12 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 10 classes/functions found in unexpanded results (search again with the same query to see details): def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def image_processing(img): ... # mnm/tool_api.py def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): ... # mnm/tool_api.py def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def get_math_fact(number: str, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The `text_classification` function has been found, which can classify a given text into categories such as 'POSITIVE' or 'NEGATIVE'. This function can be used to determine the sentiment of the trivia fact. Now, I will write the code to use the `love_calculator` function to calculate the compatibility between Jack Dawson and Rose Dewitt Bukater, the `get_trivia_fact` function to retrieve a fun trivia fact, and the `text_classification` function to analyze the sentiment of the trivia fact. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import love_calculator, get_trivia_fact, text_classification # Calculate the love compatibility between Jack Dawson and Rose Dewitt Bukater compatibility_result = love_calculator("Jack Dawson", "Rose Dewitt Bukater") # Retrieve a fun trivia fact trivia_fact_result = get_trivia_fact("random") # Analyze the sentiment of the trivia fact sentiment_result = text_classification(trivia_fact_result["text"]) compatibility_result, trivia_fact_result, sentiment_result -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"love_calculator": , "get_trivia_fact": , "text_classification": , "compatibility_result": {'number': '95', 'message': 'Congratulations! Good choice'}, "trivia_fact_result": {'text': 'the number of times Jesus told Peter to forgive his brother in the Gospel of Matthew', 'number': 490, 'found': True, 'type': 'trivia'}, "sentiment_result": {'text': 'POSITIVE'}} ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: The code executed successfully, and I have obtained the compatibility result, a trivia fact, and the sentiment analysis of the trivia fact. I will now summarize the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import love_calculator, get_trivia_fact, text_classification compatibility_result = love_calculator("Jack Dawson", "Rose Dewitt Bukater") trivia_fact_result = get_trivia_fact("random") sentiment_result = text_classification(trivia_fact_result["text"]) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: The task has been completed successfully, and the user has acknowledged receipt of the summary. ACTION TYPE: done ACTION CONTENT: True -----Response----- None