******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I am helping plan a special date for Jacob Black and Bella Swan. Could you help me figure out their compatibility chances? Then, to give the date a cute brainy twist, please generate an intriguing math fact. Then, let's top that off by creating a creative visual representation of that fact to be used as part of their date's decoration." Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find the function that calculates compatibility chances based on names. I will search for a function related to the love calculator or compatibility check. After that, I will look for a function that can generate an intriguing math fact. Lastly, I will search for a function that can create a visual representation of text, which we can use to create a decoration based on the math fact. ACTION TYPE: search ACTION CONTENT: (type: FUNCTION) AND (text: compatibility) (type: FUNCTION) AND (text: math fact) (type: FUNCTION) AND (text: visual representation) AND (text: text) -----Response----- RESPONSE (Retrieval Result): QUERY: (type: FUNCTION) AND (text: compatibility) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[911, 929] type=FUNCTION content={ def love_calculator(first_name: str, second_name: str, ckpt=None): """ Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship. """ url = "https://love-calculator.p.rapidapi.com/getPercentage" params = {"fname": first_name, "sname": second_name} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "love-calculator.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() result_formatted = { "number": result_formatted["percentage"], "message": result_formatted["result"], } return result_formatted } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[269, 323] type=FUNCTION content={ def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): """ Edits an image based on a given text prompt using a specified model checkpoint. Args: image: The input image to be edited. prompt (str): The text prompt describing the desired edits. ckpt: The model checkpoint to use for image editing. Defaults to MODEL_SELECTION["image_editing"]. Returns: A dictionary with the key 'image' containing the edited image. Raises: ImportError: If the necessary libraries for the chosen model are not installed. Examples: # Using the default checkpoint edited_image = image_editing(input_image, "A cat with a party hat.") # Using a specific checkpoint edited_image = image_editing(input_image, "A dog on a skateboard.", ckpt="timbrooks/instruct-pix2pix") """ ... } --- (27 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 27 classes/functions found in unexpanded results (search again with the same query to see details): def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def select_object(objects, object_name, ckpt=None): ... # mnm/tool_api.py def emoji(image, object, emoji, ckpt=None): ... # mnm/tool_api.py def search_movie(movie_title: str, movie_year: str, ckpt=None): ... # mnm/tool_api.py QUERY: (type: FUNCTION) AND (text: math fact) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[863, 877] type=FUNCTION content={ def get_year_fact(year: str, ckpt=None): """ It provides interesting facts about years. """ url = f"https://numbersapi.p.rapidapi.com/{year}/year" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (33 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 33 classes/functions found in unexpanded results (search again with the same query to see details): def get_trivia_fact(number: str, ckpt=None): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def emoji(image, object, emoji, ckpt=None): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py QUERY: (type: FUNCTION) AND (text: visual representation) AND (text: text) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[348, 375] type=FUNCTION content={ def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): """ Processes an image and a question about the image, then generates an answer using a pre-trained model. Args: image: The image to be processed. question: The question related to the image. ckpt: The checkpoint or model identifier for the pre-trained model. Defaults to MODEL_SELECTION["visual_question_answering"]. Returns: A dictionary with a key 'text' containing the generated answer to the question. Examples: >>> answer = visual_question_answering(my_image, "What is in this image?") >>> print(answer['text']) "A cat sitting on a windowsill." """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- file_path=mnm/tool_api.py lines=[165, 176] type=FUNCTION content={ def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): """ Classifies a given text into a category based on the model's vocabulary. Args: text (str): The text to be classified. ckpt: The model checkpoint to use for classification. Defaults to MODEL_SELECTION["text_classification"]. Returns: dict: A dictionary with the key 'text' and the value as the classification label. Examples: >>> text_classification("I love sunny days.") {'text': 'POSITIVE'} """ ... } --- (12 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 12 classes/functions found in unexpanded results (search again with the same query to see details): def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def wikipedia_simple_search(text: str, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The function `love_calculator` from `tool_api.py` can be used to calculate the compatibility chances between Jacob Black and Bella Swan. For generating an intriguing math fact, the function `get_math_fact` can be used. However, there doesn't seem to be a direct function for creating a visual representation of text. The closest function available is `image_generation`, which takes a text prompt and generates an image matching the description. I will use this function to create a visual representation of the math fact. I will now write the code to execute these functions in sequence. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import love_calculator, get_math_fact, image_generation # Calculate compatibility chances compatibility_result = love_calculator(first_name="Jacob", second_name="Bella") # Generate an intriguing math fact math_fact_result = get_math_fact(number="random") # Assuming we want a random math fact # Generate a visual representation of the math fact visual_representation = image_generation(text=math_fact_result["text"]) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"love_calculator": , "get_math_fact": , "image_generation": , "compatibility_result": {'number': '55', 'message': 'All the best!'}, "math_fact_result": {'text': 'a number n whose 5^{th} root has a decimal part that begins with the digits of n', 'number': 5061, 'found': True, 'type': 'math'}, "visual_representation": {'image': }} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The code executed successfully, and we have obtained the compatibility result, a math fact, and a visual representation of the math fact. I will now summarize the solution using the code_summary action. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import love_calculator, get_math_fact, image_generation compatibility_result = love_calculator(first_name="Jacob", second_name="Bella") math_fact_result = get_math_fact(number="random") visual_representation = image_generation(text=math_fact_result["text"]) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged the receipt of the summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None