******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: I am writing a novel which involves the significance of numbers, specifically the number 2. Can you compile an enlightening bite-sized fact about the number 2 and then generate a textual elaboration about it that I can weave into my storyline? Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find a function in the `mnm` codebase that can retrieve a fact about the number 2. I will search for a function related to retrieving factual information or interesting facts about numbers. ACTION TYPE: search ACTION CONTENT: text: (retrieve OR fact OR information) AND (text: numbers) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (retrieve OR fact OR information) AND (text: numbers) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[863, 877] type=FUNCTION content={ def get_year_fact(year: str, ckpt=None): """ It provides interesting facts about years. """ url = f"https://numbersapi.p.rapidapi.com/{year}/year" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (21 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 18 classes/functions found in unexpanded results (search again with the same query to see details): def get_date_fact(date: str, ckpt=None): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def count(objects, ckpt=None): ... # mnm/tool_api.py def love_calculator(first_name: str, second_name: str, ckpt=None): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `get_trivia_fact` function from the `tool_api.py` file seems suitable for retrieving an interesting fact about the number 2. After obtaining the fact, I will need to find a function that can generate a textual elaboration based on the fact. I will proceed with calling `get_trivia_fact` with the number 2 as an argument. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_trivia_fact # Retrieve an interesting fact about the number 2 fact_about_number_2 = get_trivia_fact("2") -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_trivia_fact": , "fact_about_number_2": {'text': 'the price in cents per acre the USA bought Alaska from Russia', 'number': 2, 'found': True, 'type': 'trivia'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: Now that I have retrieved a fact about the number 2, I need to find a function that can generate a textual elaboration based on this fact. I will search for a text generation function in the `mnm` codebase. ACTION TYPE: search ACTION CONTENT: text: (generate OR elaborate OR text) AND (type: FUNCTION) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (generate OR elaborate OR text) AND (type: FUNCTION) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[251, 267] type=FUNCTION content={ def image_captioning( image, ckpt=MODEL_SELECTION["image_captioning"] ): # alternative: nlpconnect/vit-gpt2-image-captioning (testing, blip is better than vit-gpt2)z """ It takes an image and generates a text caption of the image. """ image = image_processing(image) pipe = pipeline("image-to-text", model=ckpt) result = pipe( image ) # [{'generated_text': 'there is a small white dog sitting next to a cell phone'}] result_formatted = {"text": result[0]["generated_text"]} return result_formatted } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- (24 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 24 classes/functions found in unexpanded results (search again with the same query to see details): def get_full_path_data(filename): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The `text_generation` function appears in the unexpanded results, which is likely suitable for generating a textual elaboration based on the fact about the number 2. I will now search specifically for the `text_generation` function to get its details and use it to generate the elaboration. ACTION TYPE: search ACTION CONTENT: text: text_generation AND (type: FUNCTION) -----Response----- RESPONSE (Retrieval Result): QUERY: text: text_generation AND (type: FUNCTION) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[111, 141] type=FUNCTION content={ def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): """ Generates a continuation of the given input text using a specified language model. Args: text (str): The input text prompt to be continued. ckpt (str, optional): The identifier for the language model to be used. Defaults to the model specified in MODEL_SELECTION["text_generation"]. Returns: dict: A dictionary containing the generated text under the key 'text'. Raises: KeyError: If the OPENAI_API_KEY environment variable is not set. APIError: If the OpenAI API encounters an issue with the request. Examples: >>> generated_text = text_generation("Once upon a time") >>> print(generated_text) {'text': '...continued text from the model...'} """ ... } --- file_path=mnm/tool_api.py lines=[348, 375] type=FUNCTION content={ def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): """ Processes an image and a question about the image, then generates an answer using a pre-trained model. Args: image: The image to be processed. question: The question related to the image. ckpt: The checkpoint or model identifier for the pre-trained model. Defaults to MODEL_SELECTION["visual_question_answering"]. Returns: A dictionary with a key 'text' containing the generated answer to the question. Examples: >>> answer = visual_question_answering(my_image, "What is in this image?") >>> print(answer['text']) "A cat sitting on a windowsill." """ ... } --- file_path=mnm/tool_api.py lines=[17, 22] type=FUNCTION content={ def get_full_path_data( filename, ): # get the path of data which isn't generated during the process base_path = MNM_BASE_PATH_DATA return os.path.join(base_path, filename) } --- (18 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 18 classes/functions found in unexpanded results (search again with the same query to see details): def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: I have found the `text_generation` function which can be used to generate a textual elaboration based on the fact about the number 2. I will now write the code to call this function with the fact as input to generate the elaboration. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import text_generation # Generate a textual elaboration based on the fact about the number 2 elaboration_about_number_2 = text_generation(fact_about_number_2['text']) -----Response----- RESPONSE (Execution Result): STDOUT: {'text': 'The USA bought Alaska from Russia for 2 cents per acre in 1867.'} RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"text_generation": , "elaboration_about_number_2": {'text': 'The USA bought Alaska from Russia for 2 cents per acre in 1867.'}} ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: The textual elaboration based on the fact about the number 2 has been successfully generated. I will now provide a code summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_trivia_fact, text_generation fact_about_number_2 = get_trivia_fact("2") elaboration_about_number_2 = text_generation(fact_about_number_2['text']) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 8 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged the receipt of the code summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None