******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I'm creating a fun presentation about the number 7 for my math class. Could you help me find a unique mathematical fact about the number 7 and then generate a relevant image that illustrates that fact? To make it more effective, I want you to crop the image to highlight the top portion." Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find a function that can retrieve a unique mathematical fact about the number 7. I will search for a function related to retrieving facts about numbers. ACTION TYPE: search ACTION CONTENT: text: (mathematical OR unique OR fact) AND (number OR numbers) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (mathematical OR unique OR fact) AND (number OR numbers) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (22 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 20 classes/functions found in unexpanded results (search again with the same query to see details): def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def count(objects, ckpt=None): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def love_calculator(first_name: str, second_name: str, ckpt=None): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `get_math_fact` function from the `tool_api.py` file seems to be the right choice for retrieving a unique mathematical fact about the number 7. Next, I will need to find a function that can generate an image based on the fact retrieved. I will search for a function related to generating images from text descriptions. ACTION TYPE: search ACTION CONTENT: text: (generate OR create) AND (image OR picture) AND (text OR description) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (generate OR create) AND (image OR picture) AND (text OR description) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[251, 267] type=FUNCTION content={ def image_captioning( image, ckpt=MODEL_SELECTION["image_captioning"] ): # alternative: nlpconnect/vit-gpt2-image-captioning (testing, blip is better than vit-gpt2)z """ It takes an image and generates a text caption of the image. """ image = image_processing(image) pipe = pipeline("image-to-text", model=ckpt) result = pipe( image ) # [{'generated_text': 'there is a small white dog sitting next to a cell phone'}] result_formatted = {"text": result[0]["generated_text"]} return result_formatted } --- (19 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 17 classes/functions found in unexpanded results (search again with the same query to see details): def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def search_movie(movie_title: str, movie_year: str, ckpt=None): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The `image_generation` function from the `tool_api.py` file is suitable for generating an image based on a text description. After generating the image, I will need to crop it to highlight the top portion. I will search for a function related to cropping images. ACTION TYPE: search ACTION CONTENT: text: crop AND image -----Response----- RESPONSE (Retrieval Result): QUERY: text: crop AND image CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[536, 556] type=FUNCTION content={ def image_crop_left(image, ckpt=None): """ Crops the left half of the provided image and returns it in a formatted dictionary. Args: image: The image to be cropped. ckpt: Optional checkpoint data (unused in the current implementation). Returns: A dictionary containing the cropped image with the key 'image'. Examples: Assuming `image` is a PIL Image object: >>> result = image_crop_left(image) >>> result['image'] # This will contain the left half of the original image. """ ... } --- file_path=mnm/tool_api.py lines=[581, 602] type=FUNCTION content={ def image_crop_top(image, ckpt=None): """ Crops the top half of an image and returns it in a dictionary. Args: image: The image to be cropped. ckpt: Optional checkpoint data (unused in the current implementation). Returns: A dictionary containing the cropped image with the key 'image'. Examples: >>> from PIL import Image >>> original_image = Image.open('path/to/image.jpg') >>> cropped_image_info = image_crop_top(original_image) >>> cropped_image = cropped_image_info['image'] """ ... } --- file_path=mnm/tool_api.py lines=[604, 625] type=FUNCTION content={ def image_crop_bottom(image, ckpt=None): """ Crops the bottom half of an image and returns it in a dictionary. Args: image: The image to be cropped. ckpt: Optional checkpoint data (unused in the current implementation). Returns: A dictionary containing the cropped image with the key 'image'. Examples: Assuming `image` is a PIL Image object: >>> cropped_image_result = image_crop_bottom(image) >>> cropped_image = cropped_image_result['image'] """ ... } --- (4 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 4 out of 4 classes/functions found in unexpanded results (search again with the same query to see details): def image_crop_right(image, ckpt=None): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def save_output(task_idx, node_idx, output_dict, result_folder): ... # mnm/tool_api.py ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: I have found the `image_crop_top` function which can be used to crop the top half of an image. Now, I will write the code to first get a mathematical fact about the number 7 using `get_math_fact`, then generate an image based on that fact using `image_generation`, and finally crop the top portion of the generated image using `image_crop_top`. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_math_fact, image_generation, image_crop_top # Retrieve a unique mathematical fact about the number 7 math_fact = get_math_fact(number="7") # Generate an image based on the retrieved fact generated_image_info = image_generation(text=math_fact['text']) # Crop the top portion of the generated image cropped_image_info = image_crop_top(image=generated_image_info['image']) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_math_fact": , "image_generation": , "image_crop_top": , "math_fact": {'text': 'the sum of any two opposite sides on a standard six-sided die', 'number': 7, 'found': True, 'type': 'math'}, "generated_image_info": {'image': }, "cropped_image_info": {'image': }} ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: The code has been executed successfully, and the relevant variables indicate that we have obtained a mathematical fact about the number 7, generated an image based on that fact, and cropped the top portion of the image. I will now provide a summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_math_fact, image_generation, image_crop_top output0 = get_math_fact(number="7") output1 = image_generation(text=output0['text']) output2 = image_crop_top(image=output1['image']) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged the receipt of the code summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None