******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I need some unique information pertaining to the year 2022 for a blog post. Once we have the fact, can you create a corresponding image? Also, for further analysis, could you divide that image into detailed segments?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to retrieve a unique fact about the year 2022 using the information retrieval functions available in the `mnm` codebase. After obtaining the fact, I will search for a function that can generate an image based on text descriptions. Finally, I will look for a function that can segment the generated image into detailed parts. I will start by searching for the function that retrieves facts about a specific year. ACTION TYPE: search ACTION CONTENT: text: (retrieve OR fact) AND (year OR date) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (retrieve OR fact) AND (year OR date) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[943, 971] type=FUNCTION content={ def search_movie(movie_title: str, movie_year: str, ckpt=None): """ Retrieve basic movie information, including title, year, genre, and director. """ # paren_start = input['movie_title'].find('(') url = "http://www.omdbapi.com/" params = { "t": movie_title, "y": movie_year, "plot": "short", "r": "json", "apikey": OMDB_API_KEY, } response = requests.get(url, params=params) result_formatted = response.json() selected_keys = ["Title", "Year", "Genre", "Director", "Plot"] desc = "" if len(result_formatted) > 0: for k, v in result_formatted.items(): # print(k, v) if k in selected_keys and len(v) > 0: desc += f"{k}: {v}\n" else: desc = "Movie not found!" result_formatted = {"text": desc} return result_formatted } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (29 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 28 classes/functions found in unexpanded results (search again with the same query to see details): def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def get_math_fact(number: str, ckpt=None): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The function `get_year_fact` seems to be the one we need to retrieve a unique fact about the year 2022. I will use this function first to get the fact. Once I have the fact, I will proceed to search for a function that can generate an image based on the text description of the fact. I will then search for the function that can segment the generated image into detailed parts. ACTION TYPE: search ACTION CONTENT: type: FUNCTION AND text: get_year_fact -----Response----- RESPONSE (Retrieval Result): QUERY: type: FUNCTION AND text: get_year_fact CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[863, 877] type=FUNCTION content={ def get_year_fact(year: str, ckpt=None): """ It provides interesting facts about years. """ url = f"https://numbersapi.p.rapidapi.com/{year}/year" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (14 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 14 classes/functions found in unexpanded results (search again with the same query to see details): def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def emoji(image, object, emoji, ckpt=None): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def audio_processing(audio_file): ... # mnm/tool_api.py ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: Now that I have found the `get_year_fact` function, I will write code to retrieve a fact about the year 2022. After obtaining the fact, I will search for a function to generate an image based on a text description. Then, I will search for a function to segment the generated image. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_year_fact # Retrieve a unique fact about the year 2022 year_fact = get_year_fact("2022") print(year_fact) -----Response----- RESPONSE (Execution Result): STDOUT: {'text': 'the European Extremely Large Telescope is scheduled to be completed', 'number': 2022, 'found': True, 'type': 'year'} RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_year_fact": , "year_fact": {'text': 'the European Extremely Large Telescope is scheduled to be completed', 'number': 2022, 'found': True, 'type': 'year'}} ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: We have successfully retrieved a unique fact about the year 2022. Next, I will search for a function that can generate an image based on the text description of this fact. After generating the image, I will look for a function that can segment the image into detailed parts. ACTION TYPE: search ACTION CONTENT: text: (generate OR create) AND (image OR picture) AND (text OR description) -----Response----- RESPONSE (Retrieval Result): QUERY: text: (generate OR create) AND (image OR picture) AND (text OR description) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[251, 267] type=FUNCTION content={ def image_captioning( image, ckpt=MODEL_SELECTION["image_captioning"] ): # alternative: nlpconnect/vit-gpt2-image-captioning (testing, blip is better than vit-gpt2)z """ It takes an image and generates a text caption of the image. """ image = image_processing(image) pipe = pipeline("image-to-text", model=ckpt) result = pipe( image ) # [{'generated_text': 'there is a small white dog sitting next to a cell phone'}] result_formatted = {"text": result[0]["generated_text"]} return result_formatted } --- (18 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 16 classes/functions found in unexpanded results (search again with the same query to see details): def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: The function `image_generation` is suitable for generating an image based on a text description. I will use this function to create an image corresponding to the fact about the year 2022. After generating the image, I will search for the function that can segment the image into detailed parts. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import image_generation # Generate an image based on the fact about the year 2022 fact_description = year_fact['text'] generated_image = image_generation(fact_description) print(generated_image) -----Response----- RESPONSE (Execution Result): STDOUT: {'image': } RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"image_generation": , "fact_description": the European Extremely Large Telescope is scheduled to be completed, "generated_image": {'image': }} ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: We have successfully generated an image based on the fact about the year 2022. Now, I will search for a function that can segment the generated image into detailed parts. ACTION TYPE: search ACTION CONTENT: type: FUNCTION AND text: image_segmentation -----Response----- RESPONSE (Retrieval Result): QUERY: type: FUNCTION AND text: image_segmentation CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- file_path=mnm/tool_api.py lines=[325, 346] type=FUNCTION content={ def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): """ Classifies an image into one of the predefined categories using a Vision Transformer (ViT) model. Args: image: The image to be classified, which will be processed by `image_processing` function. ckpt (str, optional): The checkpoint or model identifier to use for loading the pre-trained model. Defaults to `MODEL_SELECTION["image_classification"]`. Returns: dict: A dictionary with a key "text" that maps to the predicted category of the image. Examples: >>> result = image_classification(my_image) >>> print(result) {'text': 'cat'} """ ... } --- file_path=mnm/tool_api.py lines=[87, 97] type=FUNCTION content={ def image_processing(img): # different models have different requirements for image input, so we will do preprocessing in each function if isinstance(img, Image.Image): return img.convert("RGB") elif isinstance(img, str): if os.path.exists(img): return Image.open(img).convert("RGB") else: full_path = get_full_path_data(img) return Image.open(full_path).convert("RGB") } --- (22 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 22 classes/functions found in unexpanded results (search again with the same query to see details): def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def love_calculator(first_name: str, second_name: str, ckpt=None): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 8 ******************************************************************************** ------Action------ THOUGHT: The `image_segmentation` function is what we need to segment the generated image into detailed parts. I will write code to use this function on the image we generated. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import image_segmentation # Segment the generated image into detailed parts segmentation_result = image_segmentation(generated_image['image']) print(segmentation_result) -----Response----- RESPONSE (Execution Result): STDOUT (STDOUT was too long. Showing only the start and end separated by ellipsis.): {'image': , 'objects': [{'mask': array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'truck', 'bbox': [97, 886, 132, 910], 'inst_id': 1}, {'mask': array([[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'sky-other-merged', 'bbox': [0, 0, 1023, 834], 'inst_id': 2}, {'mask': array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1. ... rray([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'truck', 'bbox': [51, 891, 91, 915], 'inst_id': 5}, {'mask': array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'building-other-merged', 'bbox': [154, 87, 900, 946], 'inst_id': 6}, {'mask': array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'mountain-merged', 'bbox': [0, 809, 1023, 890], 'inst_id': 7}]} RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"image_segmentation": , "segmentation_result": {'image': , 'objects': [{'mask': array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.]], dtype=float32), 'label': 'truck', 'bbox': [97, 886, 132, 910], 'inst_id': 1}, {'mask': array([[1., 1., 1., ..., 1., 1., 1.], [1., 1., 1., ..., 1., 1., 1.]...} ******************************************************************************** Step 9 ******************************************************************************** ------Action------ THOUGHT: The segmentation of the generated image has been successfully completed. We have obtained the original image and a list of objects with their segmentation masks, labels, bounding boxes, and instance IDs. This completes the user's request for a unique fact about the year 2022, a corresponding image, and detailed segmentation of that image. I will now provide a summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_year_fact, image_generation, image_segmentation output0 = get_year_fact("2022") output1 = image_generation(output0['text']) output2 = image_segmentation(output1['image']) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 10 ******************************************************************************** ------Action------ THOUGHT: The task has been completed successfully, and the user has acknowledged receipt of the summary. ACTION TYPE: done ACTION CONTENT: True -----Response----- None