******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "For a school project, I need to illustrate a memorable event that occurred on the 22nd of March. Could you provide me with a fascinating occurrence on that date? Afterwards, could you create an image that accurately portrays this event? For the final touch, please include a small calendar on the top right corner, highlighting the date '22-Mar'." Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find a function that can retrieve a fascinating occurrence on a specific date. I will search for a function related to retrieving historical events or interesting facts about dates. Once I have the information about the event, I will look for a function that can generate an image based on a text description, and then another function to add a small calendar to the image. ACTION TYPE: search ACTION CONTENT: text: interesting facts about dates text: retrieving factual information -----Response----- RESPONSE (Retrieval Result): QUERY: text: interesting facts about dates CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (42 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 36 classes/functions found in unexpanded results (search again with the same query to see details): def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def select_object(objects, object_name, ckpt=None): ... # mnm/tool_api.py QUERY: text: retrieving factual information CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[943, 971] type=FUNCTION content={ def search_movie(movie_title: str, movie_year: str, ckpt=None): """ Retrieve basic movie information, including title, year, genre, and director. """ # paren_start = input['movie_title'].find('(') url = "http://www.omdbapi.com/" params = { "t": movie_title, "y": movie_year, "plot": "short", "r": "json", "apikey": OMDB_API_KEY, } response = requests.get(url, params=params) result_formatted = response.json() selected_keys = ["Title", "Year", "Genre", "Director", "Plot"] desc = "" if len(result_formatted) > 0: for k, v in result_formatted.items(): # print(k, v) if k in selected_keys and len(v) > 0: desc += f"{k}: {v}\n" else: desc = "Movie not found!" result_formatted = {"text": desc} return result_formatted } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (39 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 33 classes/functions found in unexpanded results (search again with the same query to see details): def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The function `get_date_fact` from `tool_api.py` can be used to retrieve an interesting fact about the date March 22nd. After obtaining the fact, I will use the `image_generation` function to create an image that portrays the event described by the fact. Finally, I will need to find a function that can add a small calendar to the image, highlighting the specific date. I will search for functions related to image editing or adding elements to an image. ACTION TYPE: search ACTION CONTENT: text: image_generation text: editing images text: adding elements to an image -----Response----- RESPONSE (Retrieval Result): QUERY: text: image_generation CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[251, 267] type=FUNCTION content={ def image_captioning( image, ckpt=MODEL_SELECTION["image_captioning"] ): # alternative: nlpconnect/vit-gpt2-image-captioning (testing, blip is better than vit-gpt2)z """ It takes an image and generates a text caption of the image. """ image = image_processing(image) pipe = pipeline("image-to-text", model=ckpt) result = pipe( image ) # [{'generated_text': 'there is a small white dog sitting next to a cell phone'}] result_formatted = {"text": result[0]["generated_text"]} return result_formatted } --- file_path=mnm/tool_api.py lines=[111, 141] type=FUNCTION content={ def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): """ Generates a continuation of the given input text using a specified language model. Args: text (str): The input text prompt to be continued. ckpt (str, optional): The identifier for the language model to be used. Defaults to the model specified in MODEL_SELECTION["text_generation"]. Returns: dict: A dictionary containing the generated text under the key 'text'. Raises: KeyError: If the OPENAI_API_KEY environment variable is not set. APIError: If the OpenAI API encounters an issue with the request. Examples: >>> generated_text = text_generation("Once upon a time") >>> print(generated_text) {'text': '...continued text from the model...'} """ ... } --- (29 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 25 classes/functions found in unexpanded results (search again with the same query to see details): def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py QUERY: text: editing images CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[269, 323] type=FUNCTION content={ def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): """ Edits an image based on a given text prompt using a specified model checkpoint. Args: image: The input image to be edited. prompt (str): The text prompt describing the desired edits. ckpt: The model checkpoint to use for image editing. Defaults to MODEL_SELECTION["image_editing"]. Returns: A dictionary with the key 'image' containing the edited image. Raises: ImportError: If the necessary libraries for the chosen model are not installed. Examples: # Using the default checkpoint edited_image = image_editing(input_image, "A cat with a party hat.") # Using a specific checkpoint edited_image = image_editing(input_image, "A dog on a skateboard.", ckpt="timbrooks/instruct-pix2pix") """ ... } --- file_path=mnm/tool_api.py lines=[325, 346] type=FUNCTION content={ def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): """ Classifies an image into one of the predefined categories using a Vision Transformer (ViT) model. Args: image: The image to be classified, which will be processed by `image_processing` function. ckpt (str, optional): The checkpoint or model identifier to use for loading the pre-trained model. Defaults to `MODEL_SELECTION["image_classification"]`. Returns: dict: A dictionary with a key "text" that maps to the predicted category of the image. Examples: >>> result = image_classification(my_image) >>> print(result) {'text': 'cat'} """ ... } --- file_path=mnm/tool_api.py lines=[491, 534] type=FUNCTION content={ def image_crop(image, object, ckpt=None): """ Crops an image to the region within a specified bounding box. Args: image: The image to be cropped. object: A dictionary containing the bounding box coordinates with the key 'bbox'. ckpt: Optional; a checkpoint or state to use for additional processing (not used in the current implementation). Returns: A dictionary with the key 'image' containing the cropped image. Raises: ValueError: If the bounding box is a string and cannot be converted to a list of coordinates. Examples: # Assuming `img` is an image object and `obj` is a dict with bbox coordinates cropped_image_result = image_crop(img, obj) cropped_image = cropped_image_result['image'] """ ... } --- (27 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 24 classes/functions found in unexpanded results (search again with the same query to see details): def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def image_crop_left(image, ckpt=None): ... # mnm/tool_api.py def image_crop_top(image, ckpt=None): ... # mnm/tool_api.py def image_crop_bottom(image, ckpt=None): ... # mnm/tool_api.py def image_crop_right(image, ckpt=None): ... # mnm/tool_api.py QUERY: text: adding elements to an image CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[87, 97] type=FUNCTION content={ def image_processing(img): # different models have different requirements for image input, so we will do preprocessing in each function if isinstance(img, Image.Image): return img.convert("RGB") elif isinstance(img, str): if os.path.exists(img): return Image.open(img).convert("RGB") else: full_path = get_full_path_data(img) return Image.open(full_path).convert("RGB") } --- file_path=mnm/tool_api.py lines=[767, 808] type=FUNCTION content={ def emoji(image, object, emoji, ckpt=None): """ Replaces objects in an image with a specified emoji. Args: image: The image in which objects are to be replaced with an emoji. object: A dictionary containing the bounding box coordinates of the object(s) to be replaced. emoji: The name of the emoji to use for replacement. ckpt: Optional; a checkpoint for loading the model, not used in the current implementation. Returns: A dictionary with the key 'image' containing the image with the objects replaced by the specified emoji. Raises: FileNotFoundError: If the specified emoji file does not exist in the EMOJI_DIR. Examples: result = emoji(image, {'bbox': [50, 50, 100, 100]}, 'smiling_face') # This will replace the object in the image within the bounding box [50, 50, 100, 100] with the 'smiling_face' emoji. """ ... } --- file_path=mnm/tool_api.py lines=[731, 765] type=FUNCTION content={ def tag(image, objects, ckpt=None): """ Tags objects in an image with bounding boxes and class labels. Args: image: The image to be processed and tagged. objects: A list of dictionaries, each containing 'bbox' (bounding box) and 'label' (class) for an object. ckpt (optional): A checkpoint or model state to use for tagging, not used in the current implementation. Returns: A dictionary with a key 'image' containing the tagged image. Examples: # Assuming 'image' is an image object and 'objects' is a list of object dictionaries with 'bbox' and 'label' result = tag(image, objects) tagged_image = result['image'] """ ... } --- (28 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 24 classes/functions found in unexpanded results (search again with the same query to see details): def image_crop_bottom(image, ckpt=None): ... # mnm/tool_api.py def image_crop_left(image, ckpt=None): ... # mnm/tool_api.py def image_crop_right(image, ckpt=None): ... # mnm/tool_api.py def image_crop_top(image, ckpt=None): ... # mnm/tool_api.py def select_object(objects, object_name, ckpt=None): ... # mnm/tool_api.py def color_pop(image, object, ckpt=None): ... # mnm/tool_api.py def background_blur(image, object, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: I will use the `get_date_fact` function to retrieve an interesting fact about March 22nd. Then, I will use the `image_generation` function to create an image based on the text description of the event. Lastly, I will use the `image_editing` function to add a small calendar to the top right corner of the image, highlighting the date '22-Mar'. I will now write the code to execute these steps. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_date_fact, image_generation, image_editing # Retrieve an interesting fact about March 22nd date_fact = get_date_fact("2023-03-22") # Generate an image based on the text description of the event event_image = image_generation(date_fact['text']) # Add a small calendar to the top right corner of the image, highlighting '22-Mar' calendar_prompt = "Add a small calendar on the top right corner, highlighting the date '22-Mar'." final_image = image_editing(event_image['image'], calendar_prompt) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_date_fact": , "image_generation": , "image_editing": , "date_fact": {'text': 'Anne Hutchinson is expelled from Massachusetts Bay Colony for religious dissent', 'year': 1638, 'number': 82, 'found': True, 'type': 'date'}, "event_image": {'image': }, "calendar_prompt": Add a small calendar on the top right corner, highlighting the date '22-Mar'., "final_image": {'image': }} ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The code has been executed without errors, and the relevant variables indicate that we have successfully retrieved an interesting fact about March 22nd, generated an image based on the event, and edited the image to include a small calendar highlighting the date '22-Mar'. I will now provide a summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_date_fact, image_generation, image_editing date_fact = get_date_fact("2023-03-22") event_image = image_generation(date_fact['text']) final_image = image_editing(event_image['image'], "Add a small calendar on the top right corner, highlighting the date '22-Mar'.") -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged receipt of the code summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None