******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "Can you tell me something interesting about July 11th, then condense the information into a concise and readable format, and finally, provide a related engaging visual representation?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to find a function in the `mnm` codebase that can retrieve interesting facts about a specific date. Once I have the information, I will look for a function that can summarize the text into a concise format. Finally, I will search for a function that can provide a visual representation related to the date or the information retrieved. I will start by searching for the information retrieval function for dates. ACTION TYPE: search ACTION CONTENT: text: interesting facts about dates -----Response----- RESPONSE (Retrieval Result): QUERY: text: interesting facts about dates CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (42 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 36 classes/functions found in unexpanded results (search again with the same query to see details): def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def select_object(objects, object_name, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The function `get_date_fact` from `tool_api.py` is suitable for retrieving interesting facts about a specific date. I will use this function to get facts about July 11th. After obtaining the facts, I will search for a summarization function to condense the information. Lastly, I will look for a function that can generate a visual representation related to the date or the information. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_date_fact # Retrieve interesting facts about July 11th date_fact = get_date_fact("July 11") -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_date_fact": , "date_fact": {'text': 'the Lumière brothers demonstrate film technology to scientists', 'year': 1895, 'number': 193, 'found': True, 'type': 'date'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: Now that I have the interesting fact about July 11th, I need to find a function that can summarize this information into a concise and readable format. I will search for a text summarization function in the `mnm` codebase. ACTION TYPE: search ACTION CONTENT: text: summarization -----Response----- RESPONSE (Retrieval Result): QUERY: text: summarization CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[143, 163] type=FUNCTION content={ def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): """ Summarizes a given text into a few sentences using a pre-trained model. Args: text (str): The text to be summarized. ckpt: The checkpoint or model identifier to use for the summarization pipeline. Defaults to a pre-selected model checkpoint. Returns: dict: A dictionary containing the summarized text under the key 'text'. Examples: summary = text_summarization("The quick brown fox jumps over the lazy dog.") print(summary) # Outputs a summarized version of the input text. """ ... } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (24 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 21 classes/functions found in unexpanded results (search again with the same query to see details): def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The function `text_summarization` from `tool_api.py` is suitable for summarizing the interesting fact about July 11th into a concise format. I will use this function to summarize the fact obtained previously. After summarizing the text, I will search for a function that can generate a visual representation related to the date or the information. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import text_summarization # Summarize the interesting fact about July 11th summary = text_summarization(date_fact['text']) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"text_summarization": , "summary": {'text': 'Lumière brothers demonstrate film technology to scientists'}} ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: Now that I have the summarized text, I need to find a function that can generate a visual representation related to the date or the information. I will search for a function that can generate images based on text descriptions. ACTION TYPE: search ACTION CONTENT: text: image generation -----Response----- RESPONSE (Retrieval Result): QUERY: text: image generation CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- file_path=mnm/tool_api.py lines=[111, 141] type=FUNCTION content={ def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): """ Generates a continuation of the given input text using a specified language model. Args: text (str): The input text prompt to be continued. ckpt (str, optional): The identifier for the language model to be used. Defaults to the model specified in MODEL_SELECTION["text_generation"]. Returns: dict: A dictionary containing the generated text under the key 'text'. Raises: KeyError: If the OPENAI_API_KEY environment variable is not set. APIError: If the OpenAI API encounters an issue with the request. Examples: >>> generated_text = text_generation("Once upon a time") >>> print(generated_text) {'text': '...continued text from the model...'} """ ... } --- file_path=mnm/tool_api.py lines=[251, 267] type=FUNCTION content={ def image_captioning( image, ckpt=MODEL_SELECTION["image_captioning"] ): # alternative: nlpconnect/vit-gpt2-image-captioning (testing, blip is better than vit-gpt2)z """ It takes an image and generates a text caption of the image. """ image = image_processing(image) pipe = pipeline("image-to-text", model=ckpt) result = pipe( image ) # [{'generated_text': 'there is a small white dog sitting next to a cell phone'}] result_formatted = {"text": result[0]["generated_text"]} return result_formatted } --- (32 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 28 classes/functions found in unexpanded results (search again with the same query to see details): def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: The function `image_generation` from `tool_api.py` is suitable for generating an image based on a text description. I will use this function to generate a visual representation related to the summarized fact about the Lumière brothers demonstrating film technology to scientists on July 11th. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import image_generation # Generate a visual representation related to the summarized fact visual_representation = image_generation(summary['text']) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"image_generation": , "visual_representation": {'image': }} ******************************************************************************** Step 8 ******************************************************************************** ------Action------ THOUGHT: The task has been completed successfully. I retrieved an interesting fact about July 11th, summarized the information, and generated a visual representation related to the fact. I will now provide a summary of the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_date_fact, text_summarization, image_generation output0 = get_date_fact("July 11") output1 = text_summarization(output0['text']) output2 = image_generation(output1['text']) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 9 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged the receipt of the summary. The task is now complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None