******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I have a recording '237-134500-0000.flac' in which Frank was reading a text about a divorce case very slowly and becoming progressively angrier. I would like to know the main points he was elaborating on without having to listen to the whole thing. In addition, I am wondering who was getting divorced in the case Frank was reading about?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: The user wants to extract the main points from an audio recording and also identify the subjects involved in a divorce case mentioned in the recording. To achieve this, we will first need to transcribe the audio file to text using the speech recognition function from the `mnm` codebase. Once we have the transcribed text, we can use the text summarization function to extract the main points. Additionally, we will use text classification or a similar function to identify the subjects of the divorce case. Before writing any code, I will search for the relevant functions in the `mnm` codebase. ACTION TYPE: search ACTION CONTENT: text: speech recognition text: summarization text: classification -----Response----- RESPONSE (Retrieval Result): QUERY: text: speech recognition CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[463, 489] type=FUNCTION content={ def optical_character_recognition( image, ckpt=MODEL_SELECTION["optical_character_recognition"] ): """ It takes an image and outputs recognized texts in the image. """ import easyocr if isinstance(image, str): image_path = image if os.path.exists(image) else get_full_path_data(image) else: image = image_processing(image) image_path = os.path.join(MNM_BASE_PATH_DATA, "ocr_temp.jpg") image.save(image_path) assert ckpt == "easyOCR" # only support easyocr for now reader = easyocr.Reader( ["en"] ) # this needs to run only once to load the model into memory result = reader.readtext(image_path) result_text = [ text for _, text, _ in result ] # Extract only the text from the result result_formatted = {"text": ", ".join(result_text)} return result_formatted } --- file_path=mnm/tool_api.py lines=[348, 375] type=FUNCTION content={ def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): """ Processes an image and a question about the image, then generates an answer using a pre-trained model. Args: image: The image to be processed. question: The question related to the image. ckpt: The checkpoint or model identifier for the pre-trained model. Defaults to MODEL_SELECTION["visual_question_answering"]. Returns: A dictionary with a key 'text' containing the generated answer to the question. Examples: >>> answer = visual_question_answering(my_image, "What is in this image?") >>> print(answer['text']) "A cat sitting on a windowsill." """ ... } --- (37 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 34 classes/functions found in unexpanded results (search again with the same query to see details): def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py QUERY: text: summarization CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[143, 163] type=FUNCTION content={ def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): """ Summarizes a given text into a few sentences using a pre-trained model. Args: text (str): The text to be summarized. ckpt: The checkpoint or model identifier to use for the summarization pipeline. Defaults to a pre-selected model checkpoint. Returns: dict: A dictionary containing the summarized text under the key 'text'. Examples: summary = text_summarization("The quick brown fox jumps over the lazy dog.") print(summary) # Outputs a summarized version of the input text. """ ... } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (21 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 18 classes/functions found in unexpanded results (search again with the same query to see details): def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py QUERY: text: classification CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[165, 176] type=FUNCTION content={ def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): """ Classifies a given text into a category based on the model's vocabulary. Args: text (str): The text to be classified. ckpt: The model checkpoint to use for classification. Defaults to MODEL_SELECTION["text_classification"]. Returns: dict: A dictionary with the key 'text' and the value as the classification label. Examples: >>> text_classification("I love sunny days.") {'text': 'POSITIVE'} """ ... } --- file_path=mnm/tool_api.py lines=[325, 346] type=FUNCTION content={ def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): """ Classifies an image into one of the predefined categories using a Vision Transformer (ViT) model. Args: image: The image to be classified, which will be processed by `image_processing` function. ckpt (str, optional): The checkpoint or model identifier to use for loading the pre-trained model. Defaults to `MODEL_SELECTION["image_classification"]`. Returns: dict: A dictionary with a key "text" that maps to the predicted category of the image. Examples: >>> result = image_classification(my_image) >>> print(result) {'text': 'cat'} """ ... } --- file_path=mnm/tool_api.py lines=[931, 941] type=FUNCTION content={ def get_location(city: str, ckpt=None): """ Convert a city name or address to geographical coordinates using OpenStreetMap's Nominatim API. """ url = "https://nominatim.openstreetmap.org/search" headers = {"User-Agent": "m&ms"} params = {"q": city, "format": "json"} response = requests.get(url, params=params, headers=headers) result_formatted = response.json()[0] return result_formatted } --- (27 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 24 classes/functions found in unexpanded results (search again with the same query to see details): def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def tag(image, objects, ckpt=None): ... # mnm/tool_api.py def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: We have found the `automatic_speech_recognition` function which we can use to transcribe the audio file to text. Next, we can use the `text_summarization` function to summarize the transcribed text to get the main points. Finally, to identify who was getting divorced, we can use the `text_classification` function to classify the text and extract relevant information. However, the `text_classification` function seems to classify text into categories rather than extract specific entities, so we might need to use a different approach for that part. We will start by transcribing the audio and summarizing the text, and then we will address the identification of the subjects involved in the divorce case. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import automatic_speech_recognition, text_summarization # Transcribe the audio file to text audio_file_path = '/root/input_data/237-134500-0000.flac' transcription_result = automatic_speech_recognition(audio=audio_file_path) # Summarize the transcribed text if 'text' in transcription_result: summarized_text = text_summarization(text=transcription_result['text']) else: summarized_text = {'text': 'Transcription failed or no text returned.'} summarized_text -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"automatic_speech_recognition": , "text_summarization": , "audio_file_path": /root/input_data/237-134500-0000.flac, "transcription_result": {'text': ' Frank read English slowly, and the more he read about this divorce case, the angrier he grew.'}, "summarized_text": {'text': 'Frank read English slowly, and the more he read about this divorce case, the angrier he grew'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The transcription and summarization have been completed successfully. The summarized text indicates that Frank was reading about a divorce case slowly and with increasing anger. To identify who was getting divorced, we need to extract specific entities from the text. Since the `text_classification` function does not seem suitable for this task, we should look for a function that can perform named entity recognition (NER) or a similar task to extract names or subjects from the text. I will search the codebase for such a function. ACTION TYPE: search ACTION CONTENT: text: named entity recognition text: entity extraction text: question answering -----Response----- RESPONSE (Retrieval Result): QUERY: text: named entity recognition CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[911, 929] type=FUNCTION content={ def love_calculator(first_name: str, second_name: str, ckpt=None): """ Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship. """ url = "https://love-calculator.p.rapidapi.com/getPercentage" params = {"fname": first_name, "sname": second_name} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "love-calculator.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() result_formatted = { "number": result_formatted["percentage"], "message": result_formatted["result"], } return result_formatted } --- file_path=mnm/tool_api.py lines=[810, 838] type=FUNCTION content={ def select_object(objects, object_name, ckpt=None): """ Selects an object from a list of objects based on the input object name. Args: objects (list): A list of dictionaries, where each dictionary represents an object with a "label" key. object_name (str): The name of the object to be selected. ckpt (optional): A checkpoint or state to resume from, not used in the current implementation. Returns: dict: A dictionary with a single key "object" that maps to the selected object dictionary. Examples: >>> objects_list = [{'label': 'apple'}, {'label': 'banana'}] >>> select_object(objects_list, 'apple') {'object': {'label': 'apple'}} """ ... } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- (29 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 26 classes/functions found in unexpanded results (search again with the same query to see details): def emoji(image, object, emoji, ckpt=None): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def search_movie(movie_title: str, movie_year: str, ckpt=None): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py def text_processing(file_path): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py QUERY: text: entity extraction CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[51, 77] type=FUNCTION content={ def text_processing(file_path): """ preprocess the text file Args: - the path of .doc .docx .txt file Returns: - text with string format Notes: - This function is designed for text input. """ # Check the file extension if file_path.endswith(".txt"): with open(file_path, "r") as file: content = file.read() elif file_path.endswith(".doc") or file_path.endswith(".docx"): # Use textract to extract text from doc and docx files content = textract.process(file_path).decode("utf-8") else: # if the file is not .txt .doc .docx, then it is a string, directly return the stirng return file_path return content } --- file_path=mnm/tool_api.py lines=[943, 971] type=FUNCTION content={ def search_movie(movie_title: str, movie_year: str, ckpt=None): """ Retrieve basic movie information, including title, year, genre, and director. """ # paren_start = input['movie_title'].find('(') url = "http://www.omdbapi.com/" params = { "t": movie_title, "y": movie_year, "plot": "short", "r": "json", "apikey": OMDB_API_KEY, } response = requests.get(url, params=params) result_formatted = response.json() selected_keys = ["Title", "Year", "Genre", "Director", "Plot"] desc = "" if len(result_formatted) > 0: for k, v in result_formatted.items(): # print(k, v) if k in selected_keys and len(v) > 0: desc += f"{k}: {v}\n" else: desc = "Movie not found!" result_formatted = {"text": desc} return result_formatted } --- file_path=mnm/tool_api.py lines=[111, 141] type=FUNCTION content={ def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): """ Generates a continuation of the given input text using a specified language model. Args: text (str): The input text prompt to be continued. ckpt (str, optional): The identifier for the language model to be used. Defaults to the model specified in MODEL_SELECTION["text_generation"]. Returns: dict: A dictionary containing the generated text under the key 'text'. Raises: KeyError: If the OPENAI_API_KEY environment variable is not set. APIError: If the OpenAI API encounters an issue with the request. Examples: >>> generated_text = text_generation("Once upon a time") >>> print(generated_text) {'text': '...continued text from the model...'} """ ... } --- (26 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 21 classes/functions found in unexpanded results (search again with the same query to see details): def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def question_answering(question: str, text: str, ckpt=MODEL_SELECTION['question_answering']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def image_processing(img): ... # mnm/tool_api.py def get_math_fact(number: str, ckpt=None): ... # mnm/tool_api.py QUERY: text: question answering CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[178, 193] type=FUNCTION content={ def question_answering( question: str, text: str, ckpt=MODEL_SELECTION["question_answering"] ): # alternative: "deepset/roberta-base-squad2" """ It takes a text and a question, and outputs an answer to that question based on the text. """ question = text_processing(question) text = text_processing(text) pipe = pipeline("question-answering", model=ckpt) result_raw = pipe( question=question, context=text ) # {'score': 0.01082150824368, 'start': 0, 'end': 10, 'answer': 'My name is'} result_formatted = {"text": result_raw["answer"]} return result_formatted } --- file_path=mnm/tool_api.py lines=[879, 893] type=FUNCTION content={ def get_math_fact(number: str, ckpt=None): """ It provides interesting math facts about numbers. """ url = f"https://numbersapi.p.rapidapi.com/{number}/math" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[895, 909] type=FUNCTION content={ def get_trivia_fact(number: str, ckpt=None): """ It provides interesting trivia facts about number. """ url = f"https://numbersapi.p.rapidapi.com/{number}/trivia" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- (26 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 21 classes/functions found in unexpanded results (search again with the same query to see details): def get_date_fact(date: str, ckpt=None): ... # mnm/tool_api.py def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): ... # mnm/tool_api.py def image_processing(img): ... # mnm/tool_api.py def get_full_path_data(filename): ... # mnm/tool_api.py ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The search did not return a function specifically for named entity recognition or entity extraction. However, we found a `question_answering` function that can be used to answer questions based on a given text. We can use this function to ask who was getting divorced in the case Frank was reading about. This should allow us to extract the specific information we need from the transcribed text. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import question_answering # Use the question answering function to identify who was getting divorced question_about_divorce = "Who was getting divorced in the case?" divorce_info = question_answering(question=question_about_divorce, text=transcription_result['text']) divorce_info -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"question_answering": , "question_about_divorce": Who was getting divorced in the case?, "divorce_info": {'text': 'Frank'}} ******************************************************************************** Step 6 ******************************************************************************** ------Action------ THOUGHT: The question answering function returned "Frank" as the answer to who was getting divorced, which seems to be incorrect since Frank was the one reading about the case. This indicates that the function might not have extracted the correct entities from the text. Since we do not have a dedicated named entity recognition function, we might need to rephrase the question or try a different approach to extract the specific entities. However, given the constraints of the available functions, we may not be able to accurately identify the subjects involved in the divorce case. I will inform the user that we have successfully summarized the text but were unable to accurately identify the subjects of the divorce case using the available functions. ACTION TYPE: done ACTION CONTENT: False -----Response----- None ******************************************************************************** Step 7 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): Please immediately take a code_summary action to generate a summary of your code produced so far. If you have not produced any code yet, make an educated guess based on what you have learned so far. ******************************************************************************** Step 8 ******************************************************************************** ------Action------ THOUGHT: The user has requested a summary of the code produced so far. I will provide a summary of the steps taken to transcribe the audio, summarize the text, and attempt to extract information about the subjects involved in the divorce case. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import automatic_speech_recognition, text_summarization, question_answering audio_file_path = '/root/input_data/237-134500-0000.flac' transcription_result = automatic_speech_recognition(audio=audio_file_path) summarized_text = text_summarization(text=transcription_result['text']) question_about_divorce = "Who was getting divorced in the case?" divorce_info = question_answering(question=question_about_divorce, text=transcription_result['text']) -----Response----- None