******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: I came across an image named '11899.jpg' in an online archive. It really piqued my interest and I wish to know what it depicts. Could you also tell me something about it from a reliable source? Additionally, I'd like to gauge if the general ambiance of the description is positive or negative. Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: First, I need to identify the content of the image '11899.jpg'. I will search for an image understanding function that can classify the image. Once I have the classification, I can then search for a function that retrieves information about the classified content from a reliable source. Finally, I will need to find a text understanding function that can analyze the sentiment of the description. ACTION TYPE: search ACTION CONTENT: type: FUNCTION AND text: image classification type: FUNCTION AND text: retrieving information type: FUNCTION AND text: sentiment analysis -----Response----- RESPONSE (Retrieval Result): QUERY: type: FUNCTION AND text: image classification CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[325, 346] type=FUNCTION content={ def image_classification(image, ckpt=MODEL_SELECTION['image_classification']): """ Classifies an image into one of the predefined categories using a Vision Transformer (ViT) model. Args: image: The image to be classified, which will be processed by `image_processing` function. ckpt (str, optional): The checkpoint or model identifier to use for loading the pre-trained model. Defaults to `MODEL_SELECTION["image_classification"]`. Returns: dict: A dictionary with a key "text" that maps to the predicted category of the image. Examples: >>> result = image_classification(my_image) >>> print(result) {'text': 'cat'} """ ... } --- file_path=mnm/tool_api.py lines=[731, 765] type=FUNCTION content={ def tag(image, objects, ckpt=None): """ Tags objects in an image with bounding boxes and class labels. Args: image: The image to be processed and tagged. objects: A list of dictionaries, each containing 'bbox' (bounding box) and 'label' (class) for an object. ckpt (optional): A checkpoint or model state to use for tagging, not used in the current implementation. Returns: A dictionary with a key 'image' containing the tagged image. Examples: # Assuming 'image' is an image object and 'objects' is a list of object dictionaries with 'bbox' and 'label' result = tag(image, objects) tagged_image = result['image'] """ ... } --- file_path=mnm/tool_api.py lines=[377, 411] type=FUNCTION content={ def object_detection(image, ckpt=MODEL_SELECTION['object_detection']): """ Performs object detection on an image using a DETR (DEtection TRansformer) model. Args: image: The image on which to perform object detection. ckpt: A string representing the model checkpoint to use for object detection. Defaults to a value from MODEL_SELECTION["object_detection"]. Returns: A dictionary with two keys: - 'image': The processed image. - 'objects': A list of dictionaries, each containing a 'bbox' key with the bounding box coordinates and a 'label' key with the object's label. Raises: ImportError: If the required modules 'torch' or 'transformers' are not installed. Examples: >>> result = object_detection(my_image) >>> print(result['objects']) [{'bbox': [x1, y1, x2, y2], 'label': 'object_label'}, ...] """ ... } --- (21 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 21 classes/functions found in unexpanded results (search again with the same query to see details): def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py def image_captioning(image, ckpt=MODEL_SELECTION['image_captioning']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py QUERY: type: FUNCTION AND text: retrieving information CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[943, 971] type=FUNCTION content={ def search_movie(movie_title: str, movie_year: str, ckpt=None): """ Retrieve basic movie information, including title, year, genre, and director. """ # paren_start = input['movie_title'].find('(') url = "http://www.omdbapi.com/" params = { "t": movie_title, "y": movie_year, "plot": "short", "r": "json", "apikey": OMDB_API_KEY, } response = requests.get(url, params=params) result_formatted = response.json() selected_keys = ["Title", "Year", "Genre", "Director", "Plot"] desc = "" if len(result_formatted) > 0: for k, v in result_formatted.items(): # print(k, v) if k in selected_keys and len(v) > 0: desc += f"{k}: {v}\n" else: desc = "Movie not found!" result_formatted = {"text": desc} return result_formatted } --- file_path=mnm/tool_api.py lines=[985, 1011] type=FUNCTION content={ def wikipedia_simple_search(text: str, ckpt=None): """ Performs a basic search on Wikipedia to retrieve a summary of the most relevant page. Args: text (str): The search query text. ckpt: Unused parameter, can be anything (default is None). Returns: dict: A dictionary containing the formatted text summary of the most relevant Wikipedia page. Raises: This function may raise exceptions related to network issues or JSON decoding if the Wikipedia API changes or is unreachable. Examples: result = wikipedia_simple_search("Python programming language") # result might be something like: # {'text': 'Python is a high-level, interpreted, general-purpose programming language. Its design philosophy emphasizes code readability with its use of significant indentation.'} """ ... } --- file_path=mnm/tool_api.py lines=[413, 461] type=FUNCTION content={ def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): """ Segments an image into different parts using a pre-trained MaskFormer model and outputs segmentation masks along with additional information for each segment. Args: image: The input image to be segmented. ckpt: A string or a dictionary key that specifies the pre-trained model checkpoint to be used for segmentation. Defaults to a pre-selected model checkpoint from a MODEL_SELECTION dictionary. Returns: A dictionary containing the original image and a list of objects. Each object in the list is a dictionary with keys 'mask', 'label', 'bbox', and 'inst_id', representing the segmentation mask, label, bounding box, and instance ID, respectively. Raises: ImportError: If required modules (numpy, torch, transformers, PIL) are not installed. Examples: # Assuming `image` is a PIL image and `MODEL_SELECTION` is defined segmentation_result = image_segmentation(image) for obj in segmentation_result['objects']: print(obj['label'], obj['bbox']) """ ... } --- (33 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 33 classes/functions found in unexpanded results (search again with the same query to see details): def image_generation(text: str, ckpt=MODEL_SELECTION['image_generation']): ... # mnm/tool_api.py def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): ... # mnm/tool_api.py def visual_question_answering(image, question, ckpt=MODEL_SELECTION['visual_question_answering']): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def text_generation(text: str, ckpt=MODEL_SELECTION['text_generation']): ... # mnm/tool_api.py def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py QUERY: type: FUNCTION AND text: sentiment analysis CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[165, 176] type=FUNCTION content={ def text_classification(text: str, ckpt=MODEL_SELECTION['text_classification']): """ Classifies a given text into a category based on the model's vocabulary. Args: text (str): The text to be classified. ckpt: The model checkpoint to use for classification. Defaults to MODEL_SELECTION["text_classification"]. Returns: dict: A dictionary with the key 'text' and the value as the classification label. Examples: >>> text_classification("I love sunny days.") {'text': 'POSITIVE'} """ ... } --- file_path=mnm/tool_api.py lines=[491, 534] type=FUNCTION content={ def image_crop(image, object, ckpt=None): """ Crops an image to the region within a specified bounding box. Args: image: The image to be cropped. object: A dictionary containing the bounding box coordinates with the key 'bbox'. ckpt: Optional; a checkpoint or state to use for additional processing (not used in the current implementation). Returns: A dictionary with the key 'image' containing the cropped image. Raises: ValueError: If the bounding box is a string and cannot be converted to a list of coordinates. Examples: # Assuming `img` is an image object and `obj` is a dict with bbox coordinates cropped_image_result = image_crop(img, obj) cropped_image = cropped_image_result['image'] """ ... } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- (12 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 12 classes/functions found in unexpanded results (search again with the same query to see details): def get_date_fact(date: str, ckpt=None): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def image_processing(img): ... # mnm/tool_api.py def text_summarization(text: str, ckpt=MODEL_SELECTION['text_summarization']): ... # mnm/tool_api.py def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def get_trivia_fact(number: str, ckpt=None): ... # mnm/tool_api.py def get_math_fact(number: str, ckpt=None): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The search results have provided the necessary functions to solve the user's query. I will use the `image_classification` function to identify the content of the image '11899.jpg'. Then, I will use the `wikipedia_simple_search` function to retrieve information about the identified content from Wikipedia. Finally, I will use the `text_classification` function to analyze the sentiment of the description obtained from Wikipedia. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import image_classification, wikipedia_simple_search, text_classification # Step 1: Classify the image to understand what it depicts image_path = '/root/input_data/11899.jpg' classification_result = image_classification(image_path) # Step 2: Retrieve information about the image content from Wikipedia image_content = classification_result['text'] wikipedia_info = wikipedia_simple_search(image_content) # Step 3: Analyze the sentiment of the description description_sentiment = text_classification(wikipedia_info['text']) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"image_classification": , "wikipedia_simple_search": , "text_classification": , "image_path": /root/input_data/11899.jpg, "classification_result": {'text': 'upright, upright piano'}, "image_content": upright, upright piano, "wikipedia_info": {'text': 'manageable by the hand. There are two main types of piano: the grand piano and the upright piano. The grand piano offers better sound and more precise key control'}, "description_sentiment": {'text': 'POSITIVE'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The code executed successfully, and I have obtained the classification of the image, information about the content from Wikipedia, and the sentiment of the description. I will now summarize the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import image_classification, wikipedia_simple_search, text_classification output0 = image_classification(image='/root/input_data/11899.jpg') output1 = wikipedia_simple_search(text=output0['text']) output2 = text_classification(text=output1['text']) -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The user has acknowledged the receipt of the code summary. The task is complete. ACTION TYPE: done ACTION CONTENT: True -----Response----- None