******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I'm wondering how likely a successful relationship would be between Christian Grey and Anastasia Steele. Can you determine their love compatibility for me?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: Before writing any code, I need to find a function in the `mnm` codebase that can calculate love compatibility based on two names. I will search for a function that might be related to love compatibility or a love calculator. ACTION TYPE: search ACTION CONTENT: text: love calculator -----Response----- RESPONSE (Retrieval Result): QUERY: text: love calculator CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[911, 929] type=FUNCTION content={ def love_calculator(first_name: str, second_name: str, ckpt=None): """ Enter your name and the name of your partner/lover/crush to find Love compatibility & chances of successful love relationship. """ url = "https://love-calculator.p.rapidapi.com/getPercentage" params = {"fname": first_name, "sname": second_name} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "love-calculator.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() result_formatted = { "number": result_formatted["percentage"], "message": result_formatted["result"], } return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- file_path=mnm/tool_api.py lines=[228, 249] type=FUNCTION content={ def image_generation(text: str, ckpt=MODEL_SELECTION["image_generation"]): """ It takes a text prompt and generates an image that matches the text description. """ if ckpt == "stabilityai/stable-diffusion-xl-base-1.0": text = text_processing(text) from diffusers import DiffusionPipeline generator = DiffusionPipeline.from_pretrained( pretrained_model_name_or_path=ckpt, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ).to(DEVICE) result = generator(prompt=text).images[0] result_formatted = {"image": result} return result_formatted } --- (19 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 15 classes/functions found in unexpanded results (search again with the same query to see details): def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def audio_processing(audio_file): ... # mnm/tool_api.py def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def image_crop_top(image, ckpt=None): ... # mnm/tool_api.py def image_editing(image, prompt: str, ckpt=MODEL_SELECTION['image_editing']): ... # mnm/tool_api.py def optical_character_recognition(image, ckpt=MODEL_SELECTION['optical_character_recognition']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `love_calculator` function from the `mnm/tool_api.py` file is exactly what I need to calculate the love compatibility between Christian Grey and Anastasia Steele. I will write the code to call this function with the provided names. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import love_calculator # Calculate the love compatibility between Christian Grey and Anastasia Steele compatibility_result = love_calculator("Christian Grey", "Anastasia Steele") -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"love_calculator": , "compatibility_result": {'number': '95', 'message': 'Congratulations! Good choice'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The love compatibility calculation was successful, and the result is stored in the variable `compatibility_result`. I will now summarize the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import love_calculator output0 = love_calculator("Christian Grey", "Anastasia Steele") -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The task is complete, and the user has acknowledged receipt of the summary. ACTION TYPE: done ACTION CONTENT: True -----Response----- None