******************************************************************************** Step 1 ******************************************************************************** ------Action------ THOUGHT: None ACTION TYPE: None ACTION CONTENT: None -----Response----- RESPONSE (User Message): USER QUERY: "I'm planning a trivia night for a friend's birthday on 7th May. Can you find some unique historical event or fact that happened on this day that I can use in the trivia?" Any files mentioned in the query will be located at /root/input_data. E.g. if the query mentions example.png, it will be located at /root/input_data/example.png. Use the code base located at `/root/mnm/mnm` to solve this query. Your current directory is `/root/playground`. If the import path in retrieved code block says `testing/dir_name/file_name.py` and you want to import variable, function or class called `obj` from this file, then import using `from testing.dir_name.file_name import obj`. The code base path has either been installed via pip or has been already been added to the system path via ``` import sys sys.path.extend(['/root/mnm']) ``` ******************************************************************************** Step 2 ******************************************************************************** ------Action------ THOUGHT: Before writing any code, I need to search for a function in the `mnm` codebase that can retrieve historical events or facts for a specific date. I will start by searching for functions related to information retrieval that might handle dates. ACTION TYPE: search ACTION CONTENT: (type: FUNCTION) AND (text: historical OR text: event OR text: fact OR text: date) -----Response----- RESPONSE (Retrieval Result): QUERY: (type: FUNCTION) AND (text: historical OR text: event OR text: fact OR text: date) CODE BLOCKS: --- file_path=mnm/tool_api.py lines=[840, 861] type=FUNCTION content={ def get_date_fact(date: str, ckpt=None): """ It provides interesting facts about dates. """ from dateutil import parser date_str = date dt = parser.parse(date_str) formatted_date = dt.strftime("%m/%d") url = f"https://numbersapi.p.rapidapi.com/{formatted_date}/date" params = {"fragment": "true", "json": "true"} headers = { "X-RapidAPI-Key": RAPID_API_KEY, "X-RapidAPI-Host": "numbersapi.p.rapidapi.com", } response = requests.get(url, headers=headers, params=params) result_formatted = response.json() return result_formatted } --- file_path=mnm/tool_api.py lines=[463, 489] type=FUNCTION content={ def optical_character_recognition( image, ckpt=MODEL_SELECTION["optical_character_recognition"] ): """ It takes an image and outputs recognized texts in the image. """ import easyocr if isinstance(image, str): image_path = image if os.path.exists(image) else get_full_path_data(image) else: image = image_processing(image) image_path = os.path.join(MNM_BASE_PATH_DATA, "ocr_temp.jpg") image.save(image_path) assert ckpt == "easyOCR" # only support easyocr for now reader = easyocr.Reader( ["en"] ) # this needs to run only once to load the model into memory result = reader.readtext(image_path) result_text = [ text for _, text, _ in result ] # Extract only the text from the result result_formatted = {"text": ", ".join(result_text)} return result_formatted } --- file_path=mnm/tool_api.py lines=[195, 226] type=FUNCTION content={ def automatic_speech_recognition(audio: str, ckpt=MODEL_SELECTION['automatic_speech_recognition']): """ Performs automatic speech recognition on an audio file using a pre-trained model. Args: audio (str): The file path to the audio file to be transcribed. ckpt (str, optional): The checkpoint identifier of the pre-trained model to use. Defaults to the model specified in MODEL_SELECTION["automatic_speech_recognition"]. Returns: dict: A dictionary containing the transcription of the audio file with the key 'text'. Raises: ImportError: If the required libraries (librosa, transformers) are not installed. Examples: >>> transcription = automatic_speech_recognition("path/to/audio/file.wav") >>> print(transcription) {'text': 'The transcribed text of the audio.'} """ ... } --- (28 additional code blocks not shown. Search again with the same query to see additional results.) Prototypes for the next 7 out of 28 classes/functions found in unexpanded results (search again with the same query to see details): def image_crop(image, object, ckpt=None): ... # mnm/tool_api.py def get_weather(lon: str, lat: str, ckpt=None): ... # mnm/tool_api.py def get_location(city: str, ckpt=None): ... # mnm/tool_api.py def get_year_fact(year: str, ckpt=None): ... # mnm/tool_api.py def get_trivia_fact(number: str, ckpt=None): ... # mnm/tool_api.py def get_math_fact(number: str, ckpt=None): ... # mnm/tool_api.py def image_segmentation(image, ckpt=MODEL_SELECTION['image_segmentation']): ... # mnm/tool_api.py ******************************************************************************** Step 3 ******************************************************************************** ------Action------ THOUGHT: The `get_date_fact` function from the `mnm/tool_api.py` file seems to be exactly what we need to retrieve an interesting fact about a specific date. I will write code to call this function with the date "7th May" formatted as required by the function. ACTION TYPE: code ACTION CONTENT: from mnm.tool_api import get_date_fact # The date for the trivia night date_for_trivia = "05/07" # Format MM/DD for May 7th # Retrieve an interesting historical fact for this date historical_fact = get_date_fact(date_for_trivia) -----Response----- RESPONSE (Execution Result): CODE EXECUTED WITHOUT ERROR, STDOUT WAS EMPTY RELEVANT VARIABLES (only shown if string rep. has changed after code exec): {"get_date_fact": , "date_for_trivia": 05/07, "historical_fact": {'text': 'Louis XIV of France inaugurates the Palace of Versailles', 'year': 1664, 'number': 128, 'found': True, 'type': 'date'}} ******************************************************************************** Step 4 ******************************************************************************** ------Action------ THOUGHT: The code executed successfully and we retrieved a historical fact for May 7th. I will now summarize the solution. ACTION TYPE: code_summary ACTION CONTENT: from mnm.tool_api import get_date_fact historical_fact = get_date_fact(date="05/07") -----Response----- RESPONSE (User Message): Summary received and stored. ******************************************************************************** Step 5 ******************************************************************************** ------Action------ THOUGHT: The task has been completed successfully, and the user has acknowledged receipt of the summary. ACTION TYPE: done ACTION CONTENT: True -----Response----- None